메뉴 건너뛰기




Volumn 3077, Issue , 2004, Pages 1-15

Classifier ensembles for changing environments

Author keywords

Classifier ensembles; Concept drift; Incremental learning; Non stationary environments; Online ensembles

Indexed keywords

COMPUTER SCIENCE; COMPUTERS;

EID: 35048891979     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-25966-4_1     Document Type: Article
Times cited : (293)

References (24)
  • 3
    • 85152618419 scopus 로고
    • Empirical support for Winnow and weighted-majority based algorithms: Results on a calendar scheduling domain
    • San Francisco, CA., Morgan Kaufmann
    • A. Blum. Empirical support for Winnow and weighted-majority based algorithms: results on a calendar scheduling domain. In Proc. 12th International Conference on Machine Learning, pages 64-72, San Francisco, CA., 1995. Morgan Kaufmann.
    • (1995) Proc. 12th International Conference on Machine Learning , pp. 64-72
    • Blum, A.1
  • 4
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and on-line
    • L. Breiman. Pasting small votes for classification in large databases and on-line. Machine Learning, 36:85-103, 1999.
    • (1999) Machine Learning , vol.36 , pp. 85-103
    • Breiman, L.1
  • 8
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1):119-139, 1997.
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 15
    • 0041671074 scopus 로고    scopus 로고
    • Online pattern classification with multiple neural network systems: An experimental study
    • C. P. Lim and R. E. Harrison. Online pattern classification with multiple neural network systems: An experimental study. IEEE Transactions on Systems, Man, and Cybernetics, 35:235-247, 2003.
    • (2003) IEEE Transactions on Systems, Man, and Cybernetics , vol.35 , pp. 235-247
    • Lim, C.P.1    Harrison, R.E.2
  • 16
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear threshold algorithm. Machine Learning, 2:285-318, 1988.
    • (1988) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 18
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review. Part 1: statistical approaches
    • M. Markou and S. Singh. Novelty detection: a review. Part 1: statistical approaches. Signal Processing, 83(12):2481-2497, 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 19
    • 1942483164 scopus 로고    scopus 로고
    • PhD thesis, University of California, Berkeley
    • N. C. Oza. Online Ensemble Learning. PhD thesis, University of California, Berkeley, 2001.
    • (2001) Online Ensemble Learning
    • Oza, N.C.1
  • 23
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat. Learning in the presence of concept drift and hidden contexts. Machine Learning, 23:69-101, 1996.
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 24
    • 0012902924 scopus 로고    scopus 로고
    • Special Issue on Context Sensitivity and Concept Drift
    • G. Widmer and M. Kubat. Special Issue on Context Sensitivity and Concept Drift. Machine Learning, 32, 1998.
    • (1998) Machine Learning , vol.32
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.