메뉴 건너뛰기




Volumn 2, Issue , 2014, Pages 722-730

Classifying imbalanced data streams via dynamic feature group weighting with importance sampling

Author keywords

Class imbalance; Data stream classification; Ensemble weighting; Feature group ensemble; Importance sampling

Indexed keywords

BENCHMARKING; CLASSIFICATION (OF INFORMATION); DATA STREAMS; IMPORTANCE SAMPLING;

EID: 84936948351     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611973440.83     Document Type: Conference Paper
Times cited : (31)

References (17)
  • 1
    • 0346586663 scopus 로고    scopus 로고
    • Smote: Synthetic minority over-sampling technique
    • N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer. Smote: Synthetic minority over-sampling technique. JAIR, 16:321-357. 2002.
    • (2002) JAIR , vol.16 , pp. 321-357
    • Chawla, N.1    Bowyer, K.2    Hall, L.3    Kegelmeyer, W.4
  • 2
    • 79952737601 scopus 로고    scopus 로고
    • Towards incremental learning of nonstationary imbalanced data stream: A multiple selectively recursive approach
    • S. Chen and H. He. Towards incremental learning of nonstationary imbalanced data stream: a multiple selectively recursive approach. Evolving Systems, 2(1):35-50, 2011.
    • (2011) Evolving Systems , vol.2 , Issue.1 , pp. 35-50
    • Chen, S.1    He, H.2
  • 3
    • 50949127968 scopus 로고    scopus 로고
    • Learning from multiple sources
    • K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. JMLR, 9:1757-1774, 2008.
    • (2008) JMLR , vol.9 , pp. 1757-1774
    • Crammer, K.1    Kearns, M.2    Wortman, J.3
  • 5
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to roc analysis
    • T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861-874, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1
  • 6
    • 70350664414 scopus 로고    scopus 로고
    • Issues in evaluation of stream learning algorithms
    • New York, NY, USA, ACM
    • J. Gama, R. Sebastiao, and P. P. Rodrigues. Issues in evaluation of stream learning algorithms. In Proceedings of KDD'09, pages 329-338, New York, NY, USA, 2009. ACM.
    • (2009) Proceedings of KDD'09 , pp. 329-338
    • Gama, J.1    Sebastiao, R.2    Rodrigues, P.P.3
  • 7
    • 70449102582 scopus 로고    scopus 로고
    • A general framework for mining concept-drifting data streams with skewed distributions
    • J. Gao, W. Fan, J. Han, and P. S. Yu. A general framework for mining concept-drifting data streams with skewed distributions. In Proceedings of SDM'07, pages 3-14, 2007.
    • (2007) Proceedings of SDM'07 , pp. 3-14
    • Gao, J.1    Fan, W.2    Han, J.3    Yu, P.S.4
  • 8
    • 84866006185 scopus 로고    scopus 로고
    • Learning in non-stationary environments with class imbalance
    • ACM
    • T. Hocns and N. Chawla. Learning in non-stationary environments with class imbalance. In Proceedings of KDD'12, pages 168-176. ACM, 2012.
    • (2012) Proceedings of KDD'12 , pp. 168-176
    • Hocns, T.1    Chawla, N.2
  • 10
    • 84878083672 scopus 로고    scopus 로고
    • Exploratory under-sampling for class-imbalance learning
    • X.-Y. Liu, J. Wu, and Z.-H. Zhou. Exploratory under-sampling for class-imbalance learning. In Proceedings of ICDM'06, pages 965-969, 2006.
    • (2006) Proceedings of ICDM'06 , pp. 965-969
    • Liu, X.-Y.1    Wu, J.2    Zhou, Z.-H.3
  • 11
    • 34547539128 scopus 로고    scopus 로고
    • Comparing evaluation metrics for sentence boundary detection
    • Y. Liu and E. Shriberg. Comparing evaluation metrics for sentence boundary detection. In Proc. of ICASSP, pages 451-458, 2007.
    • (2007) Proc. of ICASSP , pp. 451-458
    • Liu, Y.1    Shriberg, E.2
  • 12
    • 84880427089 scopus 로고    scopus 로고
    • Domain adaptation with ensemble of feature groups
    • R. Samdani and W. tau Yih. Domain adaptation with ensemble of feature groups. In IJCAI, pages 1458-1464, 2011.
    • (2011) IJCAI , pp. 1458-1464
    • Samdani, R.1    Tau Yih, W.2
  • 13
    • 34147138279 scopus 로고
    • Classifier combining: Analytical results and implications
    • AAAI Press
    • K. Turner and J. Ghosh. Classifier combining: Analytical results and implications. In Proceedings of the AAAI-96 Workshop, pages 126-132. AAAI Press, 1995.
    • (1995) Proceedings of the AAAI-96 Workshop , pp. 126-132
    • Turner, K.1    Ghosh, J.2
  • 14
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams using ensemble classifiers. In KDD'03, pages 226-235, 2003.
    • (2003) KDD'03 , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.S.3    Han, J.4
  • 15
    • 84871183659 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques
    • I. H. Witten, E. Frank, and M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, 2011.
    • (2011) Morgan Kaufmann
    • Witten, I.H.1    Frank, E.2    Hall, M.A.3
  • 16
    • 41149153431 scopus 로고    scopus 로고
    • Forecasting skewed biased stochastic ozone days: Analyses, solutions and beyond
    • K. Zhang and W. Fan. Forecasting skewed biased stochastic ozone days: analyses, solutions and beyond. Knowl. Inf. Syst., 14(3):299-326, 2008.
    • (2008) Knowl. Inf. Syst. , vol.14 , Issue.3 , pp. 299-326
    • Zhang, K.1    Fan, W.2
  • 17
    • 33749587572 scopus 로고    scopus 로고
    • An automatic construction and organization strategy for ensemble learning on data streams
    • Sept.
    • Y. Zhang and X. Jin. An automatic construction and organization strategy for ensemble learning on data streams. SIGMOD Rec, 35(3):28-33, Sept. 2006.
    • (2006) SIGMOD Rec , vol.35 , Issue.3 , pp. 28-33
    • Zhang, Y.1    Jin, X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.