-
1
-
-
48949116228
-
Just-in-time adaptive classifiers-Part I: Detecting nonstationary changes
-
Jul
-
C. Alippi and M. Roveri, "Just-in-time adaptive classifiers-Part I: Detecting nonstationary changes," IEEE Trans. Neural Netw., vol. 19, no. 7, pp. 1145-1153, Jul. 2008.
-
(2008)
IEEE Trans. Neural Netw
, vol.19
, Issue.7
, pp. 1145-1153
-
-
Alippi, C.1
Roveri, M.2
-
2
-
-
80053627320
-
Adaptive learning and mining for data streams and frequent patterns
-
Univ. Politecnica Catalunya, Barcelona, Spain
-
A. Bifet, "Adaptive learning and mining for data streams and frequent patterns," Ph.D. dissertation, Dept. Llenguatges Sistemes Inf., Univ. Politecnica Catalunya, Barcelona, Spain, 2009.
-
(2009)
Ph.D. Dissertation Dept. Llenguatges Sistemes Inf.
-
-
Bifet, A.1
-
3
-
-
79952737601
-
Towards incremental learning of nonstationary imbalanced data stream: A multiple selectively recursive approach
-
S. Chen and H. He, "Towards incremental learning of nonstationary imbalanced data stream: A multiple selectively recursive approach," Evolv. Syst., vol. 2, no. 1, pp. 35-50, 2011.
-
(2011)
Evolv. Syst
, vol.2
, Issue.1
, pp. 35-50
-
-
Chen, S.1
He, H.2
-
4
-
-
80053634784
-
Incremental learning of concept drift in nonstationary environments
-
Oct
-
R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary environments," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1517-1531, Oct. 2011.
-
(2011)
IEEE Trans. Neural Netw
, vol.22
, Issue.10
, pp. 1517-1531
-
-
Elwell, R.1
Polikar, R.2
-
5
-
-
83855162220
-
Incremental learning from stream data
-
Dec
-
H. Haibo, C. Sheng, L. Kang, and X. Xin, "Incremental learning from stream data," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1901-1914, Dec. 2011.
-
(2011)
IEEE Trans. Neural Netw
, vol.22
, Issue.12
, pp. 1901-1914
-
-
Haibo, H.1
Sheng, C.2
Kang, L.3
Xin, X.4
-
6
-
-
37749050180
-
Dynamic weighted majority: An ensemble method for drifting concepts
-
Jul
-
J. Kolter and M. Maloof, "Dynamic weighted majority: An ensemble method for drifting concepts," J. Mach. Learn. Res., vol. 8, pp. 2755-2790, Jul. 2007.
-
(2007)
J. Mach. Learn. Res
, vol.8
, pp. 2755-2790
-
-
Kolter, J.1
Maloof, M.2
-
7
-
-
67149129014
-
-
Cambridge, MA, USA: MIT Press
-
J. Quinonero-Candela, M. Sugiyama, A. Schwaighofer, and N. Lawrence, Dataset Shift in Machine Learning. Cambridge, MA, USA: MIT Press, 2009.
-
(2009)
Dataset Shift in Machine Learning
-
-
Quinonero-Candela, J.1
Sugiyama, M.2
Schwaighofer, A.3
Lawrence, N.4
-
8
-
-
62449206329
-
Hierarchical clustering of time-series data streams
-
May
-
P. P. Rodrigues, J. Gama, and J. P. Pedroso, "Hierarchical clustering of time-series data streams," IEEE Trans. Knowl. Data Eng., vol. 20, no. 5, pp. 615-627, May 2008.
-
(2008)
IEEE Trans. Knowl. Data Eng
, vol.20
, Issue.5
, pp. 615-627
-
-
Rodrigues, P.P.1
Gama, J.2
Pedroso, J.P.3
-
9
-
-
0035788947
-
A streaming ensemble algorithm (SEA) for large-scale classification
-
W. N. Street and Y. Kim, "A streaming ensemble algorithm (SEA) for large-scale classification," in Proc. 7th ACM SIGKDD Int. Conf. KDD, 2001, pp. 377-382.
-
(2001)
Proc. 7th ACM SIGKDD Int. Conf. KDD
, pp. 377-382
-
-
Street, W.N.1
Kim, Y.2
-
10
-
-
35348907876
-
Dynamic integration of classifiers for handling concept drift
-
DOI 10.1016/j.inffus.2006.11.002, PII S1566253506001138, Applications of Ensemble Methods
-
A. Tsymbal, M. Pechenizkiy, P. Cunningham, and S. Puuronen, "Dynamic integration of classifiers for handling concept drift," Inf. Fusion, vol. 9, no. 1, pp. 56-68, Jan. 2008. (Pubitemid 47589061)
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 56-68
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
Puuronen, S.4
-
11
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol. 23, no. 1, pp. 69-101, 1996. (Pubitemid 126737384)
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
-
12
-
-
79960817334
-
Combining similarity in time and space for training set formation under concept drift
-
I. Zliobaite, "Combining similarity in time and space for training set formation under concept drift," Intell. Data Anal., vol. 15, no. 4, pp. 589-611, 2011.
-
(2011)
Intell. Data Anal
, vol.15
, Issue.4
, pp. 589-611
-
-
Zliobaite, I.1
-
13
-
-
78049404804
-
The impact of latency on online classification learning with concept drift
-
Y. Bi and M. A. Williams, Eds. Berlin Heidelberg, Germany: Springer-Verlag
-
G. Marrs, R. Hickey, and M. Black, "The impact of latency on online classification learning with concept drift," in Knowledge Science, Engineering and Management, vol. 6291, Y. Bi and M. A. Williams, Eds. Berlin Heidelberg, Germany: Springer-Verlag, 2010, pp. 459-469.
-
(2010)
Knowledge Science, Engineering and Management
, vol.6291
, pp. 459-469
-
-
Marrs, G.1
Hickey, R.2
Black, M.3
-
14
-
-
33749028480
-
Domain adaptation for statistical classiers
-
Jun
-
H. Daume and D. Marcu, "Domain adaptation for statistical classiers," J. Artif. Intell. Res., vol. 26, pp. 101-126, Jun. 2006.
-
(2006)
J. Artif. Intell. Res
, vol.26
, pp. 101-126
-
-
Daume, H.1
Marcu, D.2
-
15
-
-
84864049234
-
Analysis of representations for domain adaptation
-
B. Scholkopf, J. Platt, and T. Hoffman, Eds. Cambridge, MA, USA: MIT Press
-
S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira, "Analysis of representations for domain adaptation," in Advances in Neural Information Processing Systems, vol. 19, B. Scholkopf, J. Platt, and T. Hoffman, Eds. Cambridge, MA, USA: MIT Press, 2007, pp. 137-144.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 137-144
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Pereira, F.4
-
16
-
-
77956031473
-
A survey on transfer learning
-
Oct
-
J. P. Sinno and Y. Qiang, "A survey on transfer learning," IEEE Trans. Knowl. Data Eng., vol. 22, no. 10, pp. 1345-1359, Oct. 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Sinno, J.P.1
Qiang, Y.2
-
17
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
H. Shimodaira, "Improving predictive inference under covariate shift by weighting the log-likelihood function," J. Stat. Planning Inference, vol. 90, no. 2, pp. 227-244, 2000.
-
(2000)
J. Stat. Planning Inference
, vol.90
, Issue.2
, pp. 227-244
-
-
Shimodaira, H.1
-
18
-
-
0031189914
-
Multitask Learning
-
R. Caruana, "Multitask learning," Mach. Learn., vol. 28, no. 41, pp. 41-75, 1997. (Pubitemid 127507169)
-
(1997)
Machine Learning
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
19
-
-
0000125534
-
Sample selection bias as a specification error
-
J. J. Heckman, "Sample selection bias as a specification error," Econometrica, vol. 47, no. 1, pp. 153-161, 1979.
-
(1979)
Econometrica
, vol.47
, Issue.1
, pp. 153-161
-
-
Heckman, J.J.1
-
20
-
-
34249047899
-
Covariate shift adaptation by importance weighted cross validation
-
M. Sugiyama, M. Krauledat, and K.-R. Muller, "Covariate shift adaptation by importance weighted cross validation," J. Mach. Learn. Res., vol. 8, pp. 985-1005, May 2007. (Pubitemid 46798411)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 985-1005
-
-
Sugiyama, M.1
Krauledat, M.2
Muller, K.-R.3
-
21
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
B. Scholkoph, J. Platt, and T. Hoffman, Eds. Cambridge, MA, USA: MIT Press
-
J. Huang, A. J. Smola, A. Gretton, K. M. Borgwardt, and B. Scholkopf, "Correcting sample selection bias by unlabeled data," in Advances in Neural Information Processing Systems, vol. 19, B. Scholkoph, J. Platt, and T. Hoffman, Eds. Cambridge, MA, USA: MIT Press, 2007, pp. 601-608.
-
(2007)
Advances in Neural Information Processing Systems
, vol.19
, pp. 601-608
-
-
Huang, J.1
Smola, A.J.2
Gretton, A.3
Borgwardt, K.M.4
Scholkopf, B.5
-
22
-
-
80053342456
-
Domain adaptation with structural correspondence learning
-
J. Blitzer, R. McDonald, and F. Pereira, "Domain adaptation with structural correspondence learning," in Proc. Conf. EMNLP, 2006, pp. 120-128.
-
(2006)
Proc. Conf. EMNLP
, pp. 120-128
-
-
Blitzer, J.1
McDonald, R.2
Pereira, F.3
-
23
-
-
84897573740
-
A theory of learning from different domains
-
Oct
-
S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, "A theory of learning from different domains," Mach. Learn., vol. 79, nos. 1-2, pp. 151-175, Oct. 2009.
-
(2009)
Mach. Learn
, vol.79
, Issue.1-2
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Vaughan, J.W.6
-
24
-
-
84891154748
-
Automatic annotation of spoken language using out-ofdomain resources and domain adaptation
-
Univ. Washington, Seattle, WA, USA
-
A. Margolis, "Automatic annotation of spoken language using out-ofdomain resources and domain adaptation," Ph.D. dissertation, Dept. Comput. Sci., Univ. Washington, Seattle, WA, USA, 2011.
-
(2011)
Ph.D. Dissertation Dept. Comput. Sci
-
-
Margolis, A.1
-
25
-
-
33749252873
-
-
Cambridge, MA, USA: MIT Press
-
O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning. Cambridge, MA, USA: MIT Press, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Scholkopf, B.2
Zien, A.3
-
26
-
-
78649326338
-
Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions
-
Jan
-
K. Chen and S. Wang, "Semi-supervised learning via regularized boosting working on multiple semi-supervised assumptions," IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 129-143, Jan. 2011.
-
(2011)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.33
, Issue.1
, pp. 129-143
-
-
Chen, K.1
Wang, S.2
-
27
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," J. R. Stat. Soc. Ser. B, Methodol., vol. 39, no. 1, pp. 1-38, 1977.
-
(1977)
J. R. Stat. Soc. Ser. B, Methodol
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
28
-
-
77951252234
-
-
San Rafael, CA, USA: Morgan & Claypool
-
X. Zhu and A. Goldberg, Introduction to Semi-Supervised Learning. San Rafael, CA, USA: Morgan & Claypool, 2009, pp. 31-32.
-
(2009)
Introduction to Semi-Supervised Learning
, pp. 31-32
-
-
Zhu, X.1
Goldberg, A.2
-
29
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
T. Joachims, "Transductive inference for text classification using support vector machines," in Proc. 16th Int. Conf. Mach. Learn., 1999, pp. 200-209.
-
(1999)
Proc. 16th Int. Conf. Mach. Learn
, pp. 200-209
-
-
Joachims, T.1
-
30
-
-
33749253228
-
On structural risk minimization for overall risk in a problem of pattern recognition
-
V. Vapnik and A. Sterin, "On structural risk minimization for overall risk in a problem of pattern recognition," Autom. Remote Control, vol. 10, no. 3, pp. 1495-1503, 1977.
-
(1977)
Autom. Remote Control
, vol.10
, Issue.3
, pp. 1495-1503
-
-
Vapnik, V.1
Sterin, A.2
-
31
-
-
84899006908
-
Learning with local and global consistency
-
Cambridge, MA, USA: MIT Press
-
D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Scholkopf, "Learning with local and global consistency," in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2004, pp. 321-328.
-
(2004)
Advances in Neural Information Processing Systems
, pp. 321-328
-
-
Zhou, D.1
Bousquet, O.2
Lal, T.3
Weston, J.4
Scholkopf, B.5
-
32
-
-
26444592207
-
Learning from labeled and unlabeled data with label propagation
-
Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CALD 02-107
-
X. Zhu and Z. Ghahramani, "Learning from labeled and unlabeled data with label propagation," School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep. CMU-CALD-02-107, 2002.
-
(2002)
School Comput. Sci
-
-
Zhu, X.1
Ghahramani, Z.2
-
33
-
-
79956336459
-
Classification and novel class detection in data streams with active mining
-
M. Masud, J. Gao, L. Khan, J. Han, and X. Li, "Classification and novel class detection in data streams with active mining," in Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining, 2010, pp. 311-324.
-
(2010)
Proc. Pacific-Asia Conf. Knowl. Discovery Data Mining
, pp. 311-324
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
Li, X.5
-
34
-
-
80055035242
-
Oasis: Online active semi-supervised learning
-
A. Goldberg, X. Zhu, A. Furger, and J. Xu, "OASIS: Online active semi-supervised learning," in Proc. 25th Conf. Artif. Intell., 2011, pp. 1-6.
-
Proc. 25th Conf. Artif. Intell
, vol.2011
, pp. 1-6
-
-
Goldberg, A.1
Zhu, X.2
Furger, A.3
Xu, J.4
-
35
-
-
80052421217
-
Active learning with evolving streaming data
-
Berlin Heidelberg, Germany: Springer-Verlag
-
I. Zliobaite, A. Bifet, B. Pfahringer, and G. Holmes, "Active learning with evolving streaming data," in Machine Learning and Knowledge Discovery in Databases, vol. 6913. Berlin Heidelberg, Germany: Springer- Verlag, 2011, pp. 597-612.
-
(2011)
Machine Learning and Knowledge Discovery in Databases
, vol.6913
, pp. 597-612
-
-
Zliobaite, I.1
Bifet, A.2
Pfahringer, B.3
Holmes, G.4
-
36
-
-
84893586535
-
Active learning in nonstationary environments
-
Houston, TX, USA
-
R. Capo, K. Dyer, and R. Polikar, "Active learning in nonstationary environments," in Proc. IJCNN, Houston, TX, USA, 2013.
-
(2013)
Proc. IJCNN
-
-
Capo, R.1
Dyer, K.2
Polikar, R.3
-
37
-
-
0141741870
-
Learning time-varying concepts
-
Denver, CO, USA: MIT Press
-
A. Kuh, T. Petsche, and R. L. Rivest, "Learning time-varying concepts," in Advances in Neural Information Processing Systems, Denver, CO, USA: MIT Press, 1990, pp. 183-189.
-
(1990)
Advances in Neural Information Processing Systems
, pp. 183-189
-
-
Kuh, A.1
Petsche, T.2
Rivest, R.L.3
-
38
-
-
77949913486
-
The impact of diversity on online ensemble learning in the presence of concept drift
-
May
-
L. L. Minku, A. P. White, and X. Yao, "The impact of diversity on online ensemble learning in the presence of concept drift," IEEE Trans. Knowl. Data Eng., vol. 22, no. 5, pp. 730-742, May 2010.
-
(2010)
IEEE Trans. Knowl. Data Eng
, vol.22
, Issue.5
, pp. 730-742
-
-
Minku, L.L.1
White, A.P.2
Yao, X.3
-
39
-
-
56049127186
-
Online manifold regularization: A new learning setting and empirical study
-
A. Goldberg, M. Li, and X. Zhu, "Online manifold regularization: A new learning setting and empirical study," Computer, vol. 5211, no. 1, pp. 393-407, 2008.
-
(2008)
Computer
, vol.5211
, Issue.1
, pp. 393-407
-
-
Goldberg, A.1
Li, M.2
Zhu, X.3
-
40
-
-
84858710401
-
Mining recurring concept drifts with limited labeled streaming data
-
P. Li, X. Wu, and X. Hu, "Mining recurring concept drifts with limited labeled streaming data," in Proc. 2nd Asian Conf. Mach. Learn., Tokyo, Japan, 2010, pp. 241-252.
-
(2010)
Proc. 2nd Asian Conf. Mach. Learn., Tokyo, Japan
, pp. 241-252
-
-
Li, P.1
Wu, X.2
Hu, X.3
-
41
-
-
80054770829
-
Semi-supervised learning in nonstationary environments
-
G. Ditzler and R. Polikar, "Semi-supervised learning in nonstationary environments," in Proc. Int. Joint Conf. Neural Netw., 2011, pp. 2741-2748.
-
(2011)
Proc. Int. Joint Conf. Neural Netw
, pp. 2741-2748
-
-
Ditzler, G.1
Polikar, R.2
-
42
-
-
67049160126
-
A practical approach to classify evolving data streams: Training with limited amount of labeled data
-
Washington, DC, USA Dec
-
M. Masud, J. Gao, L. Khan, and J. Han, "A practical approach to classify evolving data streams: Training with limited amount of labeled data," in Proc. IEEE 8th Int. Conf. Data Mining, Washington, DC, USA, Dec. 2008, pp. 929-934.
-
(2008)
Proc IEEE 8th Int. Conf. Data Mining
, pp. 929-934
-
-
Masud, M.1
Gao, J.2
Khan, L.3
Han, J.4
-
43
-
-
77951189369
-
Mining data streams with labeled and unlabeled training examples
-
Miami, FL, USA Dec
-
P. Zhang, X. Zhu, and L. Guo, "Mining data streams with labeled and unlabeled training examples," in Proc. IEEE 9th Int. Conf. Data Mining, Miami, FL, USA, Dec. 2009, pp. 627-636.
-
(2009)
Proc IEEE 9th Int. Conf. Data Mining
, pp. 627-636
-
-
Zhang, P.1
Zhu, X.2
Guo, L.3
-
44
-
-
77950689531
-
Tracking recurring contexts using ensemble classifiers: An application to email filtering
-
I. Katakis, G. Tsoumakas, and I. Vlahavas, "Tracking recurring contexts using ensemble classifiers: An application to email filtering," Knowl. Inf. Syst., vol. 22, no. 3, pp. 371-391, 2010.
-
(2010)
Knowl. Inf. Syst
, vol.22
, Issue.3
, pp. 371-391
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
45
-
-
79951740645
-
Classifier and cluster ensembles for mining concept drifting data streams
-
Dec
-
P. Zhang, X. Zhu, J. Tan, and L. Guo, "Classifier and cluster ensembles for mining concept drifting data streams," in Proc. IEEE 10th Int. Conf. Data Mining, Dec. 2010, pp. 1175-1180.
-
(2010)
Proc IEEE 10th Int. Conf. Data Mining
, pp. 1175-1180
-
-
Zhang, P.1
Zhu, X.2
Tan, J.3
Guo, L.4
-
47
-
-
80051665683
-
Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift
-
Sept
-
R. Alaiz-Rodriguez, A. Guerrero-Curieses, and J. Cid-Sueiro, "Class and subclass probability re-estimation to adapt a classifier in the presence of concept drift," Neurocomputing, vol. 74, no. 16, pp. 2614-2623, Sept.2011.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2614-2623
-
-
Alaiz-Rodriguez, R.1
Guerrero-Curieses, A.2
Cid-Sueiro, J.3
-
48
-
-
84865411615
-
Drift mining in data: A framework for addressing drift in classification
-
Jan
-
V. Hofer and G. Krempl, "Drift mining in data: A framework for addressing drift in classification," Comput. Stat. Data Anal., vol. 57, no. 1, pp. 377-391, Jan. 2013.
-
(2013)
Comput. Stat. Data Anal
, vol.57
, Issue.1
, pp. 377-391
-
-
Hofer, V.1
Krempl, G.2
-
49
-
-
80455127215
-
The algorithm APT to classify in concurrence of latency and drift
-
J. Gama, E. Bradley, and J. Hollmen, Eds. Berlin Heidelberg, Germany: Springer- Verlag
-
G. Krempl, "The algorithm APT to classify in concurrence of latency and drift," in Advances in Intelligent Data Analysis (Lecture Notes in Computer Science), vol. 7014, J. Gama, E. Bradley, and J. Hollmen, Eds. Berlin Heidelberg, Germany: Springer-Verlag, 2011, pp. 222-233.
-
(2011)
Advances in Intelligent Data Analysis (Lecture Notes in Computer Science)
, vol.7014
, pp. 222-233
-
-
Krempl, G.1
-
50
-
-
84865066012
-
Semi-supervised learning in initially labeled non-stationary environments with gradual drift
-
K. Dyer and R. Polikar, "Semi-supervised learning in initially labeled non-stationary environments with gradual drift," in Proc. IJCNN, 2012, pp. 1-9.
-
Proc. IJCNN
, vol.2012
, pp. 1-9
-
-
Dyer, K.1
Polikar, R.2
-
51
-
-
0032254801
-
Surface reconstruction with anisotropic density-scaled alpha shapes
-
Oct
-
M. Teichmann and M. Capps, "Surface reconstruction with anisotropic density-scaled alpha shapes," in Proc. IEEE Visualizat., Oct. 1998, pp. 67-72.
-
(1998)
Proc IEEE Visualizat
, pp. 67-72
-
-
Teichmann, M.1
Capps, M.2
-
52
-
-
0030381077
-
The Quickhull Algorithm for Convex Hulls
-
C. Barber, D. Dobkin, and H. Huhdanpaa, "The QuickHull algorithm for convex hulls," ACM Trans. Math. Softw., vol. 22, no. 4, pp. 469-483, Dec. 1996. (Pubitemid 126417394)
-
(1996)
ACM Transactions on Mathematical Software
, vol.22
, Issue.4
, pp. 469-483
-
-
Barber, C.B.1
Dobkin, D.P.2
Huhdanpaa, H.3
-
54
-
-
0028259338
-
Three-dimensional alpha shapes
-
H. Edelsbrunner and E. Mucke, "Three-dimensional alpha shapes," ACM Trans. Graph., vol. 13, no. 1, pp. 43-72, 1994.
-
(1994)
ACM Trans. Graph
, vol.13
, Issue.1
, pp. 43-72
-
-
Edelsbrunner, H.1
Mucke, E.2
-
55
-
-
70449436537
-
Incremental learning in nonstationary environments with controlled forgetting
-
R. Elwell and R. Polikar, "Incremental learning in nonstationary environments with controlled forgetting," in Proc. IJCNN, 2009, pp. 771-778.
-
(2009)
Proc. IJCNN
, pp. 771-778
-
-
Elwell, R.1
Polikar, R.2
|