메뉴 건너뛰기




Volumn 1, Issue 1, 2014, Pages

Comparative study between incremental and ensemble learning on data streams: Case study

Author keywords

Big data streams; Concept drift; Ensemble learning; Incremental learning

Indexed keywords

BIG DATA;

EID: 84942770326     PISSN: None     EISSN: 21961115     Source Type: Journal    
DOI: 10.1186/2196-1115-1-5     Document Type: Article
Times cited : (66)

References (30)
  • 1
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer G, Kubat M: Learning in the presence of concept drift and hidden contexts. Mach Learn 1996,23(1):69–101.
    • (1996) Mach Learn , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 3
    • 0034499376 scopus 로고    scopus 로고
    • A note on the utility of incremental learning
    • Giraud-Carrier C: A note on the utility of incremental learning. AI Commun 2000,13(4):215–223.
    • (2000) AI Commun , vol.13 , Issue.4 , pp. 215-223
    • Giraud-Carrier, C.1
  • 4
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • Polikar R: Ensemble based systems in decision making. Circ Syst Mag 2006,6(3):21–45.
    • (2006) Circ Syst Mag , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 11
    • 33745777639 scopus 로고    scopus 로고
    • Incremental support vector learning: analysis, implementation and applications
    • Laskov P, Gehl C, Krüger S, Müller K-R: Incremental support vector learning: analysis, implementation and applications. J Mach Learn Res 2006, 7: 1909–1936.
    • (2006) J Mach Learn Res , vol.7 , pp. 1909-1936
    • Laskov, P.1    Gehl, C.2    Krüger, S.3    Müller, K.-R.4
  • 14
    • 78049358631 scopus 로고    scopus 로고
    • An online incremental learning support vector machine for large-scale data
    • Zheng J, Yu H, Shen F, Zhao J: An online incremental learning support vector machine for large-scale data. Artificial neural networks–ICANN 2010, 76–81.
    • (2010) Artificial neural networks–ICANN , pp. 76-81
    • Zheng, J.1    Yu, H.2    Shen, F.3    Zhao, J.4
  • 21
    • 77956700814 scopus 로고    scopus 로고
    • Model averaging via penalized regression for tracking concept drift
    • Yeon K, Song MS, Kim Y, Choi H, Park C: 19(2)
    • Yeon K, Song MS, Kim Y, Choi H, Park C: Model averaging via penalized regression for tracking concept drift. J Comput Graph Stat 2010.,19(2):
    • (2010) J Comput Graph Stat
  • 26
    • 68749107987 scopus 로고    scopus 로고
    • A fast ensemble pruning algorithm based on pattern mining process
    • Zhao Q-L, Jiang Y-H, Xu M: A fast ensemble pruning algorithm based on pattern mining process. Data Min Knowl Discov 2009,19(2):277–292. 10.1007/s10618-009-0138-1
    • (2009) Data Min Knowl Discov , vol.19 , Issue.2 , pp. 277-292
    • Zhao, Q.-L.1    Jiang, Y.-H.2    Xu, M.3
  • 28
    • 35048891979 scopus 로고    scopus 로고
    • Classifier ensembles for changing environments
    • Kuncheva LI: Classifier ensembles for changing environments. Multiple classifier systems 2004, 1–15.
    • (2004) Multiple classifier systems , pp. 1-15
    • Kuncheva, L.I.1
  • 30
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • Minku LL, White AP, Yao X: The impact of diversity on online ensemble learning in the presence of concept drift. IEEE Trans Knowl Data Eng 2010, 5: 730–742.
    • (2010) IEEE Trans Knowl Data Eng , vol.5 , pp. 730-742
    • Minku, L.L.1    White, A.P.2    Yao, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.