메뉴 건너뛰기




Volumn 25, Issue 1, 2014, Pages 81-94

Reacting to different types of concept drift: The accuracy updated ensemble algorithm

Author keywords

Concept drift; data stream mining; ensemble classifier; nonstationary environments

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION ALGORITHM; CONCEPT DRIFTS; DATA STREAM MINING; ENSEMBLE ALGORITHMS; ENSEMBLE APPROACHES; ENSEMBLE CLASSIFIERS; NON-STATIONARY ENVIRONMENT;

EID: 84891166135     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2013.2251352     Document Type: Article
Times cited : (416)

References (40)
  • 2
    • 70349310717 scopus 로고    scopus 로고
    • Classifier ensembles for detecting concept change in streaming data: Overview and perspectives
    • L. I. Kuncheva, "Classifier ensembles for detecting concept change in streaming data: Overview and perspectives," in Proc. 2nd Workshop SUEMA, 2008, pp. 5-10
    • (2008) Proc. 2nd Workshop SUEMA , pp. 5-10
    • Kuncheva, L.I.1
  • 4
    • 84876922286 scopus 로고    scopus 로고
    • SOMKE: Kernel density estimation over data streams by sequences of self-organizing maps
    • Aug.
    • Y. Cao, H. He, and H. Man, "SOMKE: Kernel density estimation over data streams by sequences of self-organizing maps," IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 8, pp. 1254-1268, Aug. 2012
    • (2012) IEEE Trans. Neural Netw. Learn. Syst , vol.23 , Issue.8 , pp. 1254-1268
    • Cao, Y.1    He, H.2    Man, H.3
  • 5
    • 84857177477 scopus 로고    scopus 로고
    • Ph.D. dissertation Dept. Comput. Sci., Vilnius Univ., Vilnius, Lithuania
    • I. Zliobaite, "Adaptive training set formation," Ph.D. dissertation, Dept. Comput. Sci., Vilnius Univ., Vilnius, Lithuania, 2010
    • (2010) Adaptive Training Set Formation
    • Zliobaite, I.1
  • 9
    • 1942483164 scopus 로고    scopus 로고
    • Ph.D. dissertation Computer Science Division, Univ. California, Berkeley, CA, USA Sep
    • N. C. Oza, "Online ensemble learning," Ph.D. dissertation, Computer Science Division, Univ. California, Berkeley, CA, USA, Sep. 2001
    • (2001) Online Ensemble Learning
    • Oza, N.C.1
  • 11
    • 26444530040 scopus 로고    scopus 로고
    • ACE: Adaptive classifiers-ensemble system for concept-drifting environments
    • Multiple Classifier Systems: 6th International Workshop, MCS 2005. Proceedings
    • K. Nishida, K. Yamauchi, and T. Omori, "ACE: Adaptive classifiersensemble system for concept-drifting environments," in Proc. 6th Int. Workshop Multiple Classifier Syst., 2005, pp. 176-185 (Pubitemid 41422616)
    • (2005) Lecture Notes in Computer Science , vol.3541 , pp. 176-185
    • Nishida, K.1    Yamauchi, K.2    Omori, T.3
  • 14
    • 67049160126 scopus 로고    scopus 로고
    • A practical approach to classify evolving data streams: Training with limited amount of labeled data
    • Dec
    • M. M. Masud, J. Gao, L. Khan, J. Han, and B. Thuraisingham, "A practical approach to classify evolving data streams: Training with limited amount of labeled data," in Proc. 8th IEEE Int. Conf. Data Mining, Dec. 2008, pp. 929-934
    • (2008) Proc. 8th IEEE Int. Conf. Data Mining , pp. 929-934
    • Masud, M.M.1    Gao, J.2    Khan, L.3    Han, J.4    Thuraisingham, B.5
  • 15
    • 84859261446 scopus 로고    scopus 로고
    • Handling sudden concept drift in Enron message data streams
    • Mar.
    • M. Kmieciak and J. Stefanowski, "Handling sudden concept drift in Enron message data streams," Control Cybern., vol. 40, no. 3, pp. 667-695, Mar. 2011
    • (2011) Control Cybern , vol.40 , Issue.3 , pp. 667-695
    • Kmieciak, M.1    Stefanowski, J.2
  • 16
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on online ensemble learning in the presence of concept drift
    • May
    • L. L. Minku, A. P. White, and X. Yao, "The impact of diversity on online ensemble learning in the presence of concept drift," IEEE Trans. Knowl. Data Eng., vol. 22, no. 5, pp. 730-742, May 2010
    • (2010) IEEE Trans. Knowl. Data Eng , vol.22 , Issue.5 , pp. 730-742
    • Minku, L.L.1    White, A.P.2    Yao, X.3
  • 18
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts," Mach. Learn., vol. 23, no. 1, pp. 69-101, Apr. 1996 (Pubitemid 126737384)
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1
  • 19
    • 70449100647 scopus 로고    scopus 로고
    • Learning from time-changing data with adaptive windowing
    • A. Bifet and R. Gavalda, "Learning from time-changing data with adaptive windowing," in Proc. 7th SIAM Int. Conf. Data Mining, 2007, pp. 443-448
    • (2007) Proc. 7th SIAM Int. Conf. Data Mining , pp. 443-448
    • Bifet, A.1    Gavalda, R.2
  • 20
    • 33747616446 scopus 로고    scopus 로고
    • Maintaining time-decaying stream aggregates
    • DOI 10.1016/j.jalgor.2005.01.006, PII S0196677405000234
    • E. Cohen and M. J. Strauss, "Maintaining time-decaying stream aggregates," J. Algorithms, vol. 59, no. 1, pp. 19-36, Apr. 2006 (Pubitemid 44262106)
    • (2006) Journal of Algorithms , vol.59 , Issue.1 , pp. 19-36
    • Cohen, E.1    Strauss, M.J.2
  • 22
    • 0002916530 scopus 로고
    • Continuous inspection schemes
    • Jun
    • E. S. Page, "Continuous inspection schemes," Biometrika, vol. 41, nos. 1-2, pp. 100-115, Jun. 1954
    • (1954) Biometrika , vol.41 , Issue.1-2 , pp. 100-115
    • Page, E.S.1
  • 27
    • 84857738059 scopus 로고    scopus 로고
    • DDD: A new ensemble approach for dealing with concept drift
    • Apr.
    • L. L. Minku and X. Yao, "DDD: A new ensemble approach for dealing with concept drift," IEEE Trans. Knowl. Data Eng., vol. 24, no. 4, pp. 619-633, Apr. 2012
    • (2012) IEEE Trans. Knowl. Data Eng , vol.24 , Issue.4 , pp. 619-633
    • Minku, L.L.1    Yao, X.2
  • 28
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • Dec
    • J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: An ensemble method for drifting concepts," J. Mach. Learn. Res., vol. 8, pp. 2755-2790, Dec. 2007
    • (2007) J. Mach. Learn. Res , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 29
    • 0031034197 scopus 로고    scopus 로고
    • Predictive modular neural networks for time series classification
    • DOI 10.1016/S0893-6080(96)00040-8, PII S0893608096000408
    • A. Kehagias and V. Petridis, "Predictive modular neural networks for time series classification," Neural Netw., vol. 10, no. 1, pp. 31-49, Jan. 1997 (Pubitemid 27086444)
    • (1997) Neural Networks , vol.10 , Issue.1 , pp. 31-49
    • Kehagias, A.1    Petridis, V.2
  • 30
    • 58349084016 scopus 로고    scopus 로고
    • Ph.D. dissertation Dept. Comput. Sci., Univ. Waikato, Hamilton, New Zealand
    • R. Kirkby, "Improving Hoeffding trees," Ph.D. dissertation, Dept. Comput. Sci., Univ. Waikato, Hamilton, New Zealand, 2007
    • (2007) Improving Hoeffding Trees
    • Kirkby, R.1
  • 31
    • 80053634784 scopus 로고    scopus 로고
    • Incremental learning of concept drift in nonstationary environments
    • Oct.
    • R. Elwell and R. Polikar, "Incremental learning of concept drift in nonstationary environments," IEEE Trans. Neural Netw., vol. 22, no. 10, pp. 1517-1531, Oct. 2011
    • (2011) IEEE Trans. Neural Netw , vol.22 , Issue.10 , pp. 1517-1531
    • Elwell, R.1    Polikar, R.2
  • 36
    • 70349854909 scopus 로고    scopus 로고
    • Combining time and space similarity for small size learning under concept drift
    • I. Zliobaite, "Combining time and space similarity for small size learning under concept drift," in Proc. 18th ISMIS Int. Symp., 2009, pp. 412-421
    • (2009) Proc. 18th ISMIS Int. Symp , pp. 412-421
    • Zliobaite, I.1
  • 38
  • 40
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, no. 1, pp. 1-30, Jan. 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.