메뉴 건너뛰기




Volumn , Issue , 2009, Pages 522-529

SERA: Selectively recursive approach towards nonstationary imbalanced stream data mining

Author keywords

[No Author keywords available]

Indexed keywords

ASSESSMENT METRICS; CLASS DISTRIBUTIONS; CONCEPT DRIFTS; FRAUD DETECTION; IMBALANCED DATA; NETWORK INTRUSION DETECTION; NONSTATIONARY; PERFORMANCE IMPROVEMENTS; RECURSIVE APPROACH; SPAM CLASSIFICATION; STREAM DATA; STREAM DATA MINING; SYNTHETIC DATASETS; TARGET CONCEPT; TRAINING DATA;

EID: 70449457525     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2009.5178874     Document Type: Conference Paper
Times cited : (104)

References (33)
  • 3
    • 0035789318 scopus 로고    scopus 로고
    • Experimental comparisons of online and batch versions of bagging and boosting,
    • AAAI Press
    • N. C. Oza and S. Russell, "Experimental comparisons of online and batch versions of bagging and boosting, " in Proc. 7th Int. Conf. Knowledge Discovery and Data Mining. AAAI Press, 2001, pp. 359-364.
    • (2001) Proc. 7th Int. Conf. Knowledge Discovery and Data Mining , pp. 359-364
    • Oza, N.C.1    Russell, S.2
  • 5
    • 54449093692 scopus 로고    scopus 로고
    • Imorl: Incremental multiple-object recognition and localization
    • H. He and S. Chen, "Imorl: Incremental multiple-object recognition and localization, " IEEE Trans. Neural Network, vol. 19, no. 10, pp. 1727-1738, 2008.
    • (2008) IEEE Trans. Neural Network , vol.19 , Issue.10 , pp. 1727-1738
    • He, H.1    Chen, S.2
  • 6
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • G. Widmer and M. Kubat, "Learning in the presence of concept drift and hidden contexts, " Machine Learning, vol. 23, no. 1, pp. 69-101, 1996.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 8
    • 40649128119 scopus 로고    scopus 로고
    • Nonlinear neural network: Principles, mechanisms, and architectures
    • S. Grossberg, "Nonlinear neural network: Principles, mechanisms, and architectures, " Machine Learning, vol. 1, no. 1, pp. 17-61, 1998.
    • (1998) Machine Learning , vol.1 , Issue.1 , pp. 17-61
    • Grossberg, S.1
  • 9
    • 58649083899 scopus 로고    scopus 로고
    • Learn++.nc: Combining ensemble of classifiers combined with dynamically weighted consultand-vote for efficient incremental learning of new classes
    • M. Muhlbaier, A. Topali, and R. Polikar, "Learn++.nc: Combining ensemble of classifiers combined with dynamically weighted consultand-vote for efficient incremental learning of new classes, " IEEE Trans. Neural Networks, vol. 20, no. 1, pp. 152-168, 2009.
    • (2009) IEEE Trans. Neural Networks , vol.20 , Issue.1 , pp. 152-168
    • Muhlbaier, M.1    Topali, A.2    Polikar, R.3
  • 10
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift,
    • J. Z. Kolter and M. A. Maloof, "Dynamic weighted majority: A new ensemble method for tracking concept drift, " in IEEE Int. Conf. Data Mining, 2003.
    • (2003) IEEE Int. Conf. Data Mining
    • Kolter, J.Z.1    Maloof, M.A.2
  • 12
    • 2242481419 scopus 로고    scopus 로고
    • Learning from imbalanced data sets: A comparison of various strategies,
    • the AAAI Workshop. AAAI Press
    • N. Japkowicz, "Learning from imbalanced data sets: a comparison of various strategies, " in Technical Report WS-00-05, the AAAI Workshop. AAAI Press, 2000.
    • (2000) Technical Report WS-00-05
    • Japkowicz, N.1
  • 14
    • 0026405773 scopus 로고
    • A rule-learning program in high energy physics event classification
    • S. Clearwater and E. Stern, "A rule-learning program in high energy physics event classification, " Computer physics communications, vol. 67, pp. 159-182, 1991.
    • (1991) Computer physics communications , vol.67 , pp. 159-182
    • Clearwater, S.1    Stern, E.2
  • 15
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of several methods for balancing machine learning training data, " SIGKDD Explorations Newsletter, vol. 6, pp. 20-29, 2004.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 16
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz and S. Stephen, "The class imbalance problem: a systematic study, " Intelligent Data Analysis, vol. 6, pp. 429-449, 2002.
    • (2002) Intelligent Data Analysis , vol.6 , pp. 429-449
    • Japkowicz, N.1    Stephen, S.2
  • 17
    • 56349089205 scopus 로고    scopus 로고
    • Adasyn: Adaptive synthetic sampling approach for imbalanced learning,
    • H. He, Y. Bai, E. A. Garcia, and S. Li, "Adasyn: Adaptive synthetic sampling approach for imbalanced learning, " in Proc. Int. J. Conf. Neural Networks, 2008, pp. 1322-1328.
    • (2008) Proc. Int. J. Conf. Neural Networks , pp. 1322-1328
    • He, H.1    Bai, Y.2    Garcia, E.A.3    Li, S.4
  • 18
    • 84878083672 scopus 로고    scopus 로고
    • Exploratory under-sampling for class-imbalance,
    • X. Y Liu, J. Wu, and Z. H. Zhou, "Exploratory under-sampling for class-imbalance, " in Proc. Int. Conf. Data Mining, 2006, pp. 965-969.
    • (2006) Proc. Int. Conf. Data Mining , pp. 965-969
    • Liu, X.Y.1    Wu, J.2    Zhou, Z.H.3
  • 20
    • 0002804620 scopus 로고    scopus 로고
    • A comparative study of cost-sensitive boosting algorithms,
    • K. M. Ting, "A comparative study of cost-sensitive boosting algorithms, " in Proc. Int. Conf. Machine Learning, 2000, pp. 97-105.
    • (2000) Proc. Int. Conf. Machine Learning , pp. 97-105
    • Ting, K.M.1
  • 21
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • T. Jo and N. Japkowicz, "Class imbalances versus small disjuncts, " SIGKDD Explorations Newsletter, vol. 6, no. 1, pp. 40-49, 2004.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 22
    • 33846046907 scopus 로고    scopus 로고
    • A kernel-based two-class classifier for imbalanced datasets
    • X. Hong, S. Chen, and C. J. Harris, "A kernel-based two-class classifier for imbalanced datasets, " IEEE Trans. Neural Network, vol. 18, no. 1, pp. 28-41, 2007.
    • (2007) IEEE Trans. Neural Network , vol.18 , Issue.1 , pp. 28-41
    • Hong, X.1    Chen, S.2    Harris, C.J.3
  • 23
    • 70449102582 scopus 로고    scopus 로고
    • A general framework for mining concept-drifting streams with skewed distribution,
    • J. Gao, W. Fan, J. Han, and P. S. Yu, "A general framework for mining concept-drifting streams with skewed distribution, " in SIAM Int. Conf. Data Mining, 2007.
    • (2007) SIAM Int. Conf. Data Mining
    • Gao, J.1    Fan, W.2    Han, J.3    Yu, P.S.4
  • 25
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, "Bagging predictors, " Machine Learning, vol. 24, no. 2, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 26
    • 49749130418 scopus 로고    scopus 로고
    • On appropriate assumption to mine data streams: Analysis and practice,
    • J. Gao, W. Fan, and J. Han, "On appropriate assumption to mine data streams: Analysis and practice, " in Proc. Int. Conf. Data Mining, 2007, pp. 143-152.
    • (2007) Proc. Int. Conf. Data Mining , pp. 143-152
    • Gao, J.1    Fan, W.2    Han, J.3
  • 28
    • 0003790115 scopus 로고    scopus 로고
    • The effect of class distribution on classifier learning: An empirical study,
    • Technical Report ML-TR-43
    • G. M. Weiss and F. Provost, "The effect of class distribution on classifier learning: an empirical study, " Technical Report ML-TR-43, 2001.
    • (2001)
    • Weiss, G.M.1    Provost, F.2
  • 30
    • 70449349698 scopus 로고    scopus 로고
    • Stagger: Periodicity mining of data streams using expanding sliding windows,
    • M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid, "Stagger: Periodicity mining of data streams using expanding sliding windows, " in Proc. Int. Conf. Data Mining, 2006, pp. 188-199.
    • (2006) Proc. Int. Conf. Data Mining , pp. 188-199
    • Elfeky, M.G.1    Aref, W.G.2    Elmagarmid, A.K.3
  • 32
    • 0345438685 scopus 로고    scopus 로고
    • Roc graphs: Notes and practical considerations for data mining researchers,
    • HPL-2003-4
    • T. Fawcett, "Roc graphs: Notes and practical considerations for data mining researchers, " Technical Reports HPL-2003-4, 2003.
    • (2003) Technical Reports
    • Fawcett, T.1
  • 33
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions,
    • AAAI Press
    • F. Provost and T. Fawcett, "Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions, " in Proc. 3th Int. Conf. Knowledge Discovery and Data Mining. AAAI Press, 1997, pp. 43-48.
    • (1997) Proc. 3th Int. Conf. Knowledge Discovery and Data Mining , pp. 43-48
    • Provost, F.1    Fawcett, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.