메뉴 건너뛰기




Volumn 97, Issue 3, 2014, Pages 259-293

Detecting concept change in dynamic data streams: A sequential approach based on reservoir sampling

Author keywords

Concept drift detection; Data stream mining; Reservoir sampling; Sequential hypothesis testing

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA MINING;

EID: 84910150798     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-013-5433-9     Document Type: Article
Times cited : (94)

References (29)
  • 6
    • 70349871603 scopus 로고    scopus 로고
    • Adaptive learning from evolving data streams
    • Lecture notes in computer science,Springer, Berlin, Heidelberg:
    • Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Lecture notes in computer science: Vol. 5772. Advances in intelligent data analysis VIII (pp. 249–260). Berlin, Heidelberg: Springer.
    • (2009) Advances in intelligent data analysis VIII , vol.5772 , pp. 249-260
    • Bifet, A.1    Gavaldà, R.2
  • 8
    • 85108390455 scopus 로고    scopus 로고
    • A machine learning classification broker for petascale mining of large-scale astronomy sky survey databases
    • National Science Foundation, Baltimore:
    • Borne, K. D. (2007). A machine learning classification broker for petascale mining of large-scale astronomy sky survey databases. In Next generation of data mining and cyber-enabled discovery for innovation (NGDM07). Baltimore: National Science Foundation.
    • (2007) Next generation of data mining and cyber-enabled discovery for innovation (NGDM07)
    • Borne, K.D.1
  • 9
    • 84910120824 scopus 로고    scopus 로고
    • Scalable distributed change detection from astronomy data streams using local, asynchronous eigen monitoring algorithms
    • SIAM, Philadelphia:
    • Das, K., Sug, K. B., Giannella, C., & Kargupta, H. (2009). Scalable distributed change detection from astronomy data streams using local, asynchronous eigen monitoring algorithms. In SIAM international conference on data mining (SDM’09), Nevada (pp. 156–245). Philadelphia: SIAM.
    • (2009) SIAM international conference on data mining (SDM’09) , pp. 156-245
    • Das, K.1    Sug, K.B.2    Giannella, C.3    Kargupta, H.4
  • 12
    • 31844442669 scopus 로고    scopus 로고
    • A martingale framework for concept change detection in time-varying data streams
    • ICML ’05, ACM, New York:
    • Ho, S. S. (2005). A martingale framework for concept change detection in time-varying data streams. In Proceedings of the 22nd international conference on machine learning, ICML ’05 (pp. 321–327). New York: ACM.
    • (2005) Proceedings of the 22nd international conference on machine learning , pp. 321-327
    • Ho, S.S.1
  • 19
    • 84875751702 scopus 로고    scopus 로고
    • Change detection in streaming multivariate data using likelihood detectors
    • Kuncheva, L. I. (2013). Change detection in streaming multivariate data using likelihood detectors. IEEE Transactions on Knowledge and Data Engineering, 25(5), 1175–1180.
    • (2013) IEEE Transactions on Knowledge and Data Engineering , vol.25 , Issue.5 , pp. 1175-1180
    • Kuncheva, L.I.1
  • 23
    • 0002916530 scopus 로고
    • Continuous inspection schemes
    • Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
    • (1954) Biometrika , vol.41 , Issue.1-2 , pp. 100-115
    • Page, E.S.1
  • 24
    • 81255213868 scopus 로고    scopus 로고
    • Exponentially weighted moving average charts for detecting concept drift
    • Ross, G. J., Adams, N. M., Tasoulis, D. K., & Hand, D. J. (2012). Exponentially weighted moving average charts for detecting concept drift. Pattern Recognition Letters, 33(2), 191–198.
    • (2012) Pattern Recognition Letters , vol.33 , Issue.2 , pp. 191-198
    • Ross, G.J.1    Adams, N.M.2    Tasoulis, D.K.3    Hand, D.J.4
  • 25
    • 84893630837 scopus 로고    scopus 로고
    • One pass concept change detection for data streams
    • Lecture notes in computer science, 7819, Springer, Berlin, Heidelberg:
    • Sakthithasan, S., Pears, R., & Koh, Y. S. (2013). One pass concept change detection for data streams. In Lecture notes in computer science: Vol. 7819. Advances in knowledge discovery and data mining (pp. 461–472). Berlin, Heidelberg: Springer.
    • (2013) Advances in knowledge discovery and data mining , pp. 461-472
    • Sakthithasan, S.1    Pears, R.2    Koh, Y.S.3
  • 29
    • 79957967889 scopus 로고    scopus 로고
    • Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends
    • Lecture Notes in Computer Science, 6635, Springer, Berlin, Heidelberg:
    • Widiputra, H., Pears, R., & Kasabov, N. (2011). Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends. In Lecture Notes in Computer Science: Vol. 6635. Advances in knowledge discovery and data mining (pp. 161–172). Berlin, Heidelberg: Springer.
    • (2011) Advances in knowledge discovery and data mining , pp. 161-172
    • Widiputra, H.1    Pears, R.2    Kasabov, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.