-
1
-
-
85012236181
-
A framework for clustering evolving data streams
-
VLDB endowment, VLDB ’03,
-
Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S. (2003). A framework for clustering evolving data streams. In VLDB endowment, VLDB ’03: Vol. 29. Proceedings of the 29th international conference on very large data bases (pp. 81–92).
-
(2003)
Proceedings of the 29th international conference on very large data bases
, vol.29
, pp. 81-92
-
-
Aggarwal, C.C.1
Han, J.2
Wang, J.3
Yu, P.S.4
-
2
-
-
38149013086
-
Tuning bandit algorithms in stochastic environments
-
ALT’07, Springer, Berlin, Heidelberg:
-
Audibert, J. Y., Munos, R., & Szepesvári, C. (2007). Tuning bandit algorithms in stochastic environments. In Proceedings of the 18th international conference on algorithmic learning theory, ALT’07 (pp. 150–165). Berlin, Heidelberg: Springer.
-
(2007)
Proceedings of the 18th international conference on algorithmic learning theory
, pp. 150-165
-
-
Audibert, J.Y.1
Munos, R.2
Szepesvári, C.3
-
6
-
-
70349871603
-
Adaptive learning from evolving data streams
-
Lecture notes in computer science,Springer, Berlin, Heidelberg:
-
Bifet, A., & Gavaldà, R. (2009). Adaptive learning from evolving data streams. In Lecture notes in computer science: Vol. 5772. Advances in intelligent data analysis VIII (pp. 249–260). Berlin, Heidelberg: Springer.
-
(2009)
Advances in intelligent data analysis VIII
, vol.5772
, pp. 249-260
-
-
Bifet, A.1
Gavaldà, R.2
-
7
-
-
77953527363
-
MOA: Massive online analysis
-
Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: massive online analysis. Journal of Machine Learning Research, 11, 1601–1604.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
-
8
-
-
85108390455
-
A machine learning classification broker for petascale mining of large-scale astronomy sky survey databases
-
National Science Foundation, Baltimore:
-
Borne, K. D. (2007). A machine learning classification broker for petascale mining of large-scale astronomy sky survey databases. In Next generation of data mining and cyber-enabled discovery for innovation (NGDM07). Baltimore: National Science Foundation.
-
(2007)
Next generation of data mining and cyber-enabled discovery for innovation (NGDM07)
-
-
Borne, K.D.1
-
9
-
-
84910120824
-
Scalable distributed change detection from astronomy data streams using local, asynchronous eigen monitoring algorithms
-
SIAM, Philadelphia:
-
Das, K., Sug, K. B., Giannella, C., & Kargupta, H. (2009). Scalable distributed change detection from astronomy data streams using local, asynchronous eigen monitoring algorithms. In SIAM international conference on data mining (SDM’09), Nevada (pp. 156–245). Philadelphia: SIAM.
-
(2009)
SIAM international conference on data mining (SDM’09)
, pp. 156-245
-
-
Das, K.1
Sug, K.B.2
Giannella, C.3
Kargupta, H.4
-
11
-
-
33749618778
-
Learning with drift detection
-
Lecture notes in computer science, Springer, Berlin:
-
Gama, J., Medas, P., Castillo, G., & Rodrigues, P. P. (2004). Learning with drift detection. In Lecture notes in computer science: Vol. 3171. Proceedings of the 17th Brazilian symposium on artificial intelligence (Advances in artificial intelligence—SBIA 2004) (pp. 286–295). Berlin: Springer.
-
(2004)
Proceedings of the 17th Brazilian symposium on artificial intelligence (Advances in artificial intelligence—SBIA 2004)
, vol.3171
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.P.4
-
12
-
-
31844442669
-
A martingale framework for concept change detection in time-varying data streams
-
ICML ’05, ACM, New York:
-
Ho, S. S. (2005). A martingale framework for concept change detection in time-varying data streams. In Proceedings of the 22nd international conference on machine learning, ICML ’05 (pp. 321–327). New York: ACM.
-
(2005)
Proceedings of the 22nd international conference on machine learning
, pp. 321-327
-
-
Ho, S.S.1
-
14
-
-
67650659733
-
CBDT: A concept based approach to data stream mining
-
PAKDD ’09, Springer, Berlin, Heidelberg:
-
Hoeglinger, S., Pears, R., & Koh, Y. S. (2009). CBDT: a concept based approach to data stream mining. In Proceedings of the 13th Pacific-Asia conference on advances in knowledge discovery and data mining, PAKDD ’09 (pp. 1006–1012). Berlin, Heidelberg: Springer.
-
(2009)
Proceedings of the 13th Pacific-Asia conference on advances in knowledge discovery and data mining
, pp. 1006-1012
-
-
Hoeglinger, S.1
Pears, R.2
Koh, Y.S.3
-
15
-
-
0035789299
-
Mining time-changing data streams
-
KDD ’01, ACM, New York:
-
Hulten, G., Spencer, L., & Domingos, P. (2001). Mining time-changing data streams. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’01, (pp. 97–106). New York: ACM.
-
(2001)
Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
16
-
-
38149105933
-
Early drift detection method
-
Jose, M. B., Campo-Avila, J. D., Fidalgo, R., Bifet, A., Gavaldà, R., & Morales-bueno, R. (2006). Early drift detection method. In Proceedings of the 4th ECML PKDD int. workshop on knowledge discovery from data streams, Berlin (pp. 77–86).
-
(2006)
Proceedings of the 4th ECML PKDD int. Workshop on knowledge discovery from data streams
, pp. 77-86
-
-
Jose, M.B.1
Campo-Avila, J.D.2
Fidalgo, R.3
Bifet, A.4
Gavaldà, R.5
Morales-Bueno, R.6
-
17
-
-
85123650840
-
Detecting change in data streams
-
Kifer, D., Ben-David, S., & Gehrke, J. (2004). Detecting change in data streams. In Proceedings of the thirtieth international conference on very large data bases, VLDB endowment, VLDB ’04 (Vol. 30, pp. 180–191).
-
(2004)
Proceedings of the thirtieth international conference on very large data bases, VLDB endowment, VLDB ’04
, vol.30
, pp. 180-191
-
-
Kifer, D.1
Ben-David, S.2
Gehrke, J.3
-
19
-
-
84875751702
-
Change detection in streaming multivariate data using likelihood detectors
-
Kuncheva, L. I. (2013). Change detection in streaming multivariate data using likelihood detectors. IEEE Transactions on Knowledge and Data Engineering, 25(5), 1175–1180.
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, vol.25
, Issue.5
, pp. 1175-1180
-
-
Kuncheva, L.I.1
-
21
-
-
56449108844
-
Empirical Bernstein stopping
-
ICML ’08, ACM, New York:
-
Mnih, V., Szepesvári, C., & Audibert, J. Y. (2008). Empirical Bernstein stopping. In Proceedings of the 25th international conference on machine learning, ICML ’08 (pp. 672–679). New York: ACM.
-
(2008)
Proceedings of the 25th international conference on machine learning
, pp. 672-679
-
-
Mnih, V.1
Szepesvári, C.2
Audibert, J.Y.3
-
22
-
-
38149140915
-
Detecting concept drift using statistical testing
-
DS’07, Springer, Berlin, Heidelberg:
-
Nishida, K., & Yamauchi, K. (2007). Detecting concept drift using statistical testing. In Proceedings of the 10th international conference on discovery science, DS’07 (pp. 264–269). Berlin, Heidelberg: Springer.
-
(2007)
Proceedings of the 10th international conference on discovery science
, pp. 264-269
-
-
Nishida, K.1
Yamauchi, K.2
-
23
-
-
0002916530
-
Continuous inspection schemes
-
Page, E. S. (1954). Continuous inspection schemes. Biometrika, 41(1/2), 100–115.
-
(1954)
Biometrika
, vol.41
, Issue.1-2
, pp. 100-115
-
-
Page, E.S.1
-
24
-
-
81255213868
-
Exponentially weighted moving average charts for detecting concept drift
-
Ross, G. J., Adams, N. M., Tasoulis, D. K., & Hand, D. J. (2012). Exponentially weighted moving average charts for detecting concept drift. Pattern Recognition Letters, 33(2), 191–198.
-
(2012)
Pattern Recognition Letters
, vol.33
, Issue.2
, pp. 191-198
-
-
Ross, G.J.1
Adams, N.M.2
Tasoulis, D.K.3
Hand, D.J.4
-
25
-
-
84893630837
-
One pass concept change detection for data streams
-
Lecture notes in computer science, 7819, Springer, Berlin, Heidelberg:
-
Sakthithasan, S., Pears, R., & Koh, Y. S. (2013). One pass concept change detection for data streams. In Lecture notes in computer science: Vol. 7819. Advances in knowledge discovery and data mining (pp. 461–472). Berlin, Heidelberg: Springer.
-
(2013)
Advances in knowledge discovery and data mining
, pp. 461-472
-
-
Sakthithasan, S.1
Pears, R.2
Koh, Y.S.3
-
26
-
-
84894144376
-
A study on change detection methods
-
EPIA 2009, Springer, Berlin, Heidelberg:
-
Sebastiao, R., & Gama, J. (2009). A study on change detection methods. In Proceedings of the 14th Portuguese conference on artificial intelligence, EPIA 2009 (pp. 353–364). Berlin, Heidelberg: Springer.
-
(2009)
Proceedings of the 14th Portuguese conference on artificial intelligence
, pp. 353-364
-
-
Sebastiao, R.1
Gama, J.2
-
29
-
-
79957967889
-
Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends
-
Lecture Notes in Computer Science, 6635, Springer, Berlin, Heidelberg:
-
Widiputra, H., Pears, R., & Kasabov, N. (2011). Multiple time-series prediction through multiple time-series relationships profiling and clustered recurring trends. In Lecture Notes in Computer Science: Vol. 6635. Advances in knowledge discovery and data mining (pp. 161–172). Berlin, Heidelberg: Springer.
-
(2011)
Advances in knowledge discovery and data mining
, pp. 161-172
-
-
Widiputra, H.1
Pears, R.2
Kasabov, N.3
|