메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1175-1180

Classifier and cluster ensembles for mining concept drifting data streams

Author keywords

Classification; Concept drifting; Data stream mining; Ensemble learning

Indexed keywords

BASE MODELS; CLASS LABELS; CLASSIFICATION; CLASSIFIER ENSEMBLES; CLUSTER ENSEMBLES; CONCEPT DRIFTING; DATA STREAM; DATA STREAM MINING; ENSEMBLE CLASSIFIERS; ENSEMBLE LEARNING; ENSEMBLE MODELS; INTERNAL STRUCTURE; INTRINSIC MERITS; LABEL PROPAGATION; LABOR INTENSIVE; PREDICTION MODEL; REAL WORLD DATA; STREAM DATA; STREAM DATA MINING; UNLABELED SAMPLES; WEIGHTED AVERAGES;

EID: 79951740645     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2010.125     Document Type: Conference Paper
Times cited : (83)

References (18)
  • 3
  • 5
    • 78149308001 scopus 로고    scopus 로고
    • Incremental support vector machine construction
    • C. Domeniconi, D. Gunopulos. Incremental Support Vector Machine Construction, In Proc. of ICDM 2001.
    • (2001) Proc. of ICDM
    • Domeniconi, C.1    Gunopulos, D.2
  • 6
    • 49749130418 scopus 로고    scopus 로고
    • On appropriate assumptions to mine data streams: Analysis and practice
    • J. Gao, W. Fan, J. Han. On appropriate assumptions to mine data streams: analysis and practice, In Proc. of ICDM 2007.
    • (2007) Proc. of ICDM
    • Gao, J.1    Fan, W.2    Han, J.3
  • 7
    • 72449181218 scopus 로고    scopus 로고
    • Heterogeneous source consensus learning via decision propagation and negotiation
    • J. Gao, W. Fan, Y. Sun, J. Han, Heterogeneous source consensus learning via decision propagation and negotiation, In Proc. of KDD 2009
    • (2009) Proc. of KDD
    • Gao, J.1    Fan, W.2    Sun, Y.3    Han, J.4
  • 9
    • 67049160126 scopus 로고    scopus 로고
    • A practical approach to classify evolving data streams: Training with limited amount of labeled data
    • M. Masud, J. Gao, L. Khan et al., A Practical Approach to Classify Evolving Data Streams: Training with Limited Amount of Labeled Data, In Proc. of ICDM 2008.
    • (2008) Proc. of ICDM
    • Masud, M.1    Gao, J.2    Khan, L.3
  • 11
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting data streams using ensemble classifiers
    • H. Wang, W. Fan, P. Yu, J. Han. Mining concept-drifting data streams using ensemble classifiers, In Proc. of KDD 2003.
    • (2003) Proc. of KDD
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 12
    • 33747890538 scopus 로고    scopus 로고
    • Data mining: Practical machine learning tools and techniques
    • I. Witten, E. Frank. Data mining: practical machine learning tools and techniques, Morgan Kaufmann, 2005.
    • (2005) Morgan Kaufmann
    • Witten, I.1    Frank, E.2
  • 14
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining partitionings
    • A. Strehl et al., Cluster Ensembles-A Knowledge Reuse Framework for Combining Partitionings, JMLR, Vol. (3), 2002.
    • (2002) JMLR , Issue.3
    • Strehl, A.1
  • 16
    • 77951189369 scopus 로고    scopus 로고
    • Mining data streams with labeled and unlabeled training examples
    • P. Zhang, X. Zhu, L. Guo, Mining data streams with labeled and unlabeled training examples, In Proc. of ICDM 2009.
    • (2009) Proc. of ICDM
    • Zhang, P.1    Zhu, X.2    Guo, L.3
  • 17
    • 65449158881 scopus 로고    scopus 로고
    • Categorizing and mining concept drifting data streams
    • P. Zhang, X. Zhu, Y. Shi, Categorizing and mining concept drifting data streams. In Proc. of KDD 2008.
    • (2008) Proc. of KDD
    • Zhang, P.1    Zhu, X.2    Shi, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.