메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 340-345

A comparison of ensemble and case-base maintenance techniques for handling concept drift in spam filtering

Author keywords

[No Author keywords available]

Indexed keywords

CASE-BASE MAINTENANCE PROTOCOL; CONCEPT DRIFT; FALSE POSITIVES (FP); SPAM FILTERING;

EID: 33746060148     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (24)

References (21)
  • 1
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. 1996. Bagging predictors. Machine Learning 24(2): 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 2
    • 0032634129 scopus 로고    scopus 로고
    • Pasting small votes for classification in large databases and online
    • Breiman, L. 1999. Pasting small votes for classification in large databases and online. Machine Learning 36(1-2):85-103.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 85-103
    • Breiman, L.1
  • 3
    • 35048899801 scopus 로고    scopus 로고
    • An analysis of case-based editing in a spam filtering system
    • 7th Eur. Conf. on Case-Based Reasoning. Springer
    • Delany, S. J., and Cunningham, P. 2004. An analysis of case-based editing in a spam filtering system. In 7th Eur. Conf. on Case-Based Reasoning, volume 3155 of LNAI, 128-141. Springer.
    • (2004) LNAI , vol.3155 , pp. 128-141
    • Delany, S.J.1    Cunningham, P.2
  • 4
    • 22544443981 scopus 로고    scopus 로고
    • A case-based technique for tracking concept drift in spam filtering
    • Delany, S. J.; Cunningham, P.; Tsymbal, A.; and Coyle, L. 2005. A case-based technique for tracking concept drift in spam filtering. Knowledge-Based Systems 18(4-5): 187-195.
    • (2005) Knowledge-based Systems , vol.18 , Issue.4-5 , pp. 187-195
    • Delany, S.J.1    Cunningham, P.2    Tsymbal, A.3    Coyle, L.4
  • 5
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich, D. T. 1998. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computing 10:1895-1923.
    • (1998) Neural Computing , vol.10 , pp. 1895-1923
    • Dietterich, D.T.1
  • 7
    • 0000833531 scopus 로고    scopus 로고
    • The impact of changing populations on classifier performance
    • ACM Press
    • Kelly, M.; Hand, D.; and Adams, N. 1999. The impact of changing populations on classifier performance. In KDD-99, 367-371. ACM Press.
    • (1999) KDD-99 , pp. 367-371
    • Kelly, M.1    Hand, D.2    Adams, N.3
  • 8
    • 84883713774 scopus 로고    scopus 로고
    • Learning drifting concepts: Example selection vs. example weighting
    • Klinkenberg, R. 2004. Learning drifting concepts: Example selection vs. example weighting. Intelligent Data Analysis 8(3).
    • (2004) Intelligent Data Analysis , vol.8 , Issue.3
    • Klinkenberg, R.1
  • 9
    • 78149292125 scopus 로고    scopus 로고
    • Dynamic weighted majority: A new ensemble method for tracking concept drift
    • Kolter, J., and Maloof, M. 2003. Dynamic weighted majority: a new ensemble method for tracking concept drift. In 3rd IEEE Int. Conf. on Data Mining, 123-130.
    • (2003) 3rd IEEE Int. Conf. on Data Mining , pp. 123-130
    • Kolter, J.1    Maloof, M.2
  • 10
    • 84948955324 scopus 로고
    • Adapting to drift in continuous domains
    • 8th Eur Conf on Machine Learning. Springer
    • Kubat, M., and Widmer, G. 1995. Adapting to drift in continuous domains. In 8th Eur Conf on Machine Learning, volume 912 of LNCS, 307-310. Springer.
    • (1995) LNCS , vol.912 , pp. 307-310
    • Kubat, M.1    Widmer, G.2
  • 14
    • 0031070068 scopus 로고    scopus 로고
    • Tolerating concept and sampling shift in lazy learning using prediction error context switching
    • Salganicoff, M. 1997. Tolerating concept and sampling shift in lazy learning using prediction error context switching. Al Review 11(1-5):133-155.
    • (1997) Al Review , vol.11 , Issue.1-5 , pp. 133-155
    • Salganicoff, M.1
  • 16
    • 0035788947 scopus 로고    scopus 로고
    • A streaming ensemble algorithm (sea) for large-scale classification
    • ACM Press
    • Street, W., and Kim, Y. 2001. A streaming ensemble algorithm (sea) for large-scale classification. In KDD-01, 377-382. ACM Press.
    • (2001) KDD-01 , pp. 377-382
    • Street, W.1    Kim, Y.2
  • 17
    • 84974706809 scopus 로고    scopus 로고
    • Bagging and boosting with dynamic integration of classifiers
    • Springer
    • Tsymbal, A., and Puuronen, S. 2000. Bagging and boosting with dynamic integration of classifiers. In Proc of PKDD 2000, 116-125. Springer.
    • (2000) Proc of PKDD 2000 , pp. 116-125
    • Tsymbal, A.1    Puuronen, S.2
  • 19
    • 77952415079 scopus 로고    scopus 로고
    • Mining concept-drifting datastreams using ensemble classifiers
    • ACM Press
    • Wang, H.; Fan, W.; Yu, P.; and Han, J. 2003. Mining concept-drifting datastreams using ensemble classifiers. In KDD-03, 226-235. ACM Press.
    • (2003) KDD-03 , pp. 226-235
    • Wang, H.1    Fan, W.2    Yu, P.3    Han, J.4
  • 20
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: The effect of class distribution on tree induction
    • Weiss, G., and Provost, F. 2003. Learning when training data are costly: The effect of class distribution on tree induction. Journal of Al Research 19:315-354.
    • (2003) Journal of Al Research , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2
  • 21
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G., and Kubat, M. 1996. Learning in the presence of concept drift and hidden contexts. Machine Learning 23(1):69-101.
    • (1996) Machine Learning , vol.23 , Issue.1 , pp. 69-101
    • Widmer, G.1    Kubat, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.