메뉴 건너뛰기




Volumn 24, Issue 4, 2012, Pages 619-633

DDD: A new ensemble approach for dealing with concept drift

Author keywords

Concept drift; diversity; ensembles of learning machines; online learning

Indexed keywords

CONCEPT DRIFTS; DIVERSITY; DIVERSITY LEVEL; ENSEMBLE LEARNING APPROACH; ENSEMBLES OF LEARNING MACHINES; EXPERIMENTAL COMPARISON; FALSE POSITIVE; LEARNING MACHINES; ONLINE LEARNING; ONLINE LEARNING ALGORITHMS;

EID: 84857738059     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2011.58     Document Type: Article
Times cited : (406)

References (40)
  • 2
    • 0141921552 scopus 로고    scopus 로고
    • Online ensemble learning: An empirical study
    • A. Fern and R. Givan, "Online Ensemble Learning: An Empirical Study," Machine Learning, vol. 53, pp. 71-109, 2003.
    • (2003) Machine Learning , vol.53 , pp. 71-109
    • Fern, A.1    Givan, R.2
  • 8
    • 49749130418 scopus 로고    scopus 로고
    • On appropriate assumptions to mine data streams: Analysis and practice
    • J. Gao, W. Fan, and J. Han, "On Appropriate Assumptions to Mine Data Streams: Analysis and Practice," Proc. IEEE Int'l Conf. Data Mining (ICDM), pp. 143-152, 2007.
    • (2007) Proc. IEEE Int'l Conf. Data Mining (ICDM) , pp. 143-152
    • Gao, J.1    Fan, W.2    Han, J.3
  • 9
    • 77949913486 scopus 로고    scopus 로고
    • The impact of diversity on on-line ensemble learning in the presence of concept drift
    • May
    • F.L. Minku, A. White, and X. Yao, "The Impact of Diversity on On-Line Ensemble Learning in the Presence of Concept Drift," IEEE Trans. Knowledge and Data Eng., vol. 22, no. 5, pp. 730-742, http:// dx.doi.org/10.1109/TKDE.2009.156, May 2010.
    • (2010) IEEE Trans. Knowledge and Data Eng. , vol.22 , Issue.5 , pp. 730-742
    • Minku, F.L.1    White, A.2    Yao, X.3
  • 13
    • 33749590337 scopus 로고    scopus 로고
    • Prequential probability: Principles and properties
    • A. Dawid and V. Vovk, "Prequential Probability: Principles and Properties," Bernoulli, vol. 5, no. 1, pp. 125-162, 1999.
    • (1999) Bernoulli , vol.5 , Issue.1 , pp. 125-162
    • Dawid, A.1    Vovk, V.2
  • 16
    • 7444250934 scopus 로고    scopus 로고
    • Fast and Light Boosting for Adaptive Mining of Data Streams
    • Advances in Knowledge Discovery and Data Mining
    • F. Chu and C. Zaniolo, "Fast and Light Boosting for Adaptive Mining of Data Streams," Proc. Pacific-Asia Conf. Knowledge Discovery and Data Mining (PAKDD '04), pp. 282-292, 2004. (Pubitemid 38824911)
    • (2004) Lecture Notes in Computer Science , Issue.3056 , pp. 282-292
    • Chu, F.1    Zaniolo, C.2
  • 20
    • 70449102582 scopus 로고    scopus 로고
    • A general framework for mining concept-drifting data streams with skewed distributions
    • J. Gao, W. Fan, J. Han, and P. Yu, "A General Framework for Mining Concept-Drifting Data Streams with Skewed Distributions," Proc. SIAM Int'l Conf. Data Mining (ICDM), 2007.
    • (2007) Proc. SIAM Int'l Conf. Data Mining (ICDM)
    • Gao, J.1    Fan, W.2    Han, J.3    Yu, P.4
  • 21
    • 54449093692 scopus 로고    scopus 로고
    • IMORL: Incremental multiple-object recognition and localization
    • Oct.
    • H. He and S. Chen, "IMORL: Incremental Multiple-Object Recognition and Localization," IEEE Trans. Neural Networks, vol. 19, no. 10, pp. 1727-1738, Oct. 2008.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.10 , pp. 1727-1738
    • He, H.1    Chen, S.2
  • 24
    • 80053266647 scopus 로고    scopus 로고
    • PhD dissertation, Hokkaido Univ.
    • K. Nishida, "Learning and Detecting Concept Drift," PhD dissertation, Hokkaido Univ., http://lis2.huie.hokudai.ac.jp/ knishida/paper/nishida2008-dissertation .pdf, 2008.
    • (2008) Learning and Detecting Concept Drift
    • Nishida, K.1
  • 26
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • J.Z. Kolter and M.A. Maloof, "Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts," J. Machine Learning Research, vol. 8, pp. 2755-2790, 2007.
    • (2007) J. Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 28
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • K. Tumer and J. Ghosh, "Error Correlation and Error Reduction in Ensemble Classifiers," Connection Science, vol. 8, no. 3, pp. 385-404, 1996.
    • (1996) Connection Science , vol.8 , Issue.3 , pp. 385-404
    • Tumer, K.1    Ghosh, J.2
  • 29
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • L.I. Kuncheva and C.J. Whitaker, "Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy," Machine Learning, vol. 51, pp. 181-207, 2003.
    • (2003) Machine Learning , vol.51 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 30
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • DOI 10.1007/s10994-006-9449-2
    • E.K. Tang, P.N. Sunganthan, and X. Yao, "An Analysis of Diversity Measures," Machine Learning, vol. 65, pp. 247-271, 2006. (Pubitemid 44451200)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 33
    • 84857739737 scopus 로고    scopus 로고
    • The UCI KDD Archive
    • "The UCI KDD Archive," http://mlr.cs.umass.edu/ml/ databases/kddcup99/kddcup99.html, 1999.
    • (1999)
  • 34
    • 33749394792 scopus 로고    scopus 로고
    • Technical Report UNSW-CSE-TR-9905, Artificial Intelligence Group, School of Computer Science and Eng., The Univ. of New South Wales, Sydney
    • M. Harries, "Splice-2 Comparative Evaluation: Electricity Pricing," Technical Report UNSW-CSE-TR-9905, Artificial Intelligence Group, School of Computer Science and Eng., The Univ. of New South Wales, Sydney, 1999.
    • (1999) Splice-2 Comparative Evaluation: Electricity Pricing
    • Harries, M.1
  • 35
    • 0031246271 scopus 로고    scopus 로고
    • Decision Tree Induction Based on Efficient Tree Restructuring
    • P. Utgoff, N. Berkman, and J. Clouse, "Decision Tree Induction Based on Efficient Tree Restructuring," Machine Learning, vol. 29, no. 1, pp. 5-44, 1997. (Pubitemid 127507172)
    • (1997) Machine Learning , vol.29 , Issue.1 , pp. 5-44
    • Utgoff, P.E.1    Berkman, N.C.2    Clouse, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.