메뉴 건너뛰기




Volumn 12, Issue 4, 2003, Pages 945-949

A General Framework for Mining Massive Data Streams

Author keywords

Data mining; Hoeffding bounds; Machine learning; Scalability; Subsampling

Indexed keywords


EID: 0742323983     PISSN: 10618600     EISSN: None     Source Type: Journal    
DOI: 10.1198/1061860032544     Document Type: Conference Paper
Times cited : (127)

References (6)
  • 2
    • 0002815587 scopus 로고    scopus 로고
    • A General Method for Scaling up Machine Learning Algorithms and its Application to Clustering
    • Williamstown, MA: Morgan Kaufmann
    • _ (2001), "A General Method for Scaling up Machine Learning Algorithms and its Application to Clustering," in Proceedings of the Eighteenth International Conference on Machine Learning, Williamstown, MA: Morgan Kaufmann, pp. 106-113.
    • (2001) Proceedings of the Eighteenth International Conference on Machine Learning , pp. 106-113
  • 4
    • 84947403595 scopus 로고
    • Probability Inequalities for Sums of Bounded Random Variables
    • Hoeffding, W. (1963), "Probability Inequalities for Sums of Bounded Random Variables," Journal of the American Statistical Association, 58, 13-30.
    • (1963) Journal of the American Statistical Association , vol.58 , pp. 13-30
    • Hoeffding, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.