-
1
-
-
84865846785
-
AMP-activated protein kinase regulation and biological actions in the heart
-
Zaha V.G., Young L.H. AMP-activated protein kinase regulation and biological actions in the heart. Circ. Res. 2012, 111:800-814.
-
(2012)
Circ. Res.
, vol.111
, pp. 800-814
-
-
Zaha, V.G.1
Young, L.H.2
-
2
-
-
0031007065
-
The AMP-activated protein kinase - fuel gauge of the mammalian cell?
-
Hardie D.G., Carling D. The AMP-activated protein kinase - fuel gauge of the mammalian cell?. Eur. J. Biochem. 1997, 246:259-273.
-
(1997)
Eur. J. Biochem.
, vol.246
, pp. 259-273
-
-
Hardie, D.G.1
Carling, D.2
-
3
-
-
0037122766
-
Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase
-
Minokoshi Y., et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002, 415:339-343.
-
(2002)
Nature
, vol.415
, pp. 339-343
-
-
Minokoshi, Y.1
-
4
-
-
0036851817
-
Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase
-
Yamauchi T., et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 2002, 8:1288-1295.
-
(2002)
Nat. Med.
, vol.8
, pp. 1288-1295
-
-
Yamauchi, T.1
-
5
-
-
78149279712
-
AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury
-
Russell R.R., et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J. Clin. Invest. 2004, 114:495-503.
-
(2004)
J. Clin. Invest.
, vol.114
, pp. 495-503
-
-
Russell, R.R.1
-
6
-
-
0029093341
-
High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase
-
Kudo N., et al. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 1995, 270:17513-17520.
-
(1995)
J. Biol. Chem.
, vol.270
, pp. 17513-17520
-
-
Kudo, N.1
-
7
-
-
0034687210
-
Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia
-
Marsin A.S., et al. Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia. Curr. Biol. 2000, 10:1247-1255.
-
(2000)
Curr. Biol.
, vol.10
, pp. 1247-1255
-
-
Marsin, A.S.1
-
8
-
-
0032881635
-
Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR
-
Russell R.R., et al. Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR. Am. J. Physiol. 1999, 277:H643-H649.
-
(1999)
Am. J. Physiol.
, vol.277
, pp. H643-H649
-
-
Russell, R.R.1
-
9
-
-
79956298543
-
A small molecule AMPK activator protects the heart against ischemia-reperfusion injury
-
Kim A.S., et al. A small molecule AMPK activator protects the heart against ischemia-reperfusion injury. J. Mol. Cell. Cardiol. 2011, 51:24-32.
-
(2011)
J. Mol. Cell. Cardiol.
, vol.51
, pp. 24-32
-
-
Kim, A.S.1
-
10
-
-
40949087724
-
Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling
-
Calvert J.W., et al. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 2008, 57:696-705.
-
(2008)
Diabetes
, vol.57
, pp. 696-705
-
-
Calvert, J.W.1
-
11
-
-
63849162173
-
AMP-activated protein kinase: a core signalling pathway in the heart
-
Kim A.S., et al. AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol. 2009, 196:37-53.
-
(2009)
Acta Physiol.
, vol.196
, pp. 37-53
-
-
Kim, A.S.1
-
12
-
-
33749367975
-
Activation of AMPK alpha- and gamma-isoform complexes in the intact ischemic rat heart
-
Li J., et al. Activation of AMPK alpha- and gamma-isoform complexes in the intact ischemic rat heart. Am. J. Physiol. Heart Circ. Physiol. 2006, 291:H1927-H1934.
-
(2006)
Am. J. Physiol. Heart Circ. Physiol.
, vol.291
, pp. H1927-H1934
-
-
Li, J.1
-
13
-
-
84864814469
-
Embryonic expression of AMPK γ subunits and the identification of a novel γ2 transcript variant in adult heart
-
Pinter K., et al. Embryonic expression of AMPK γ subunits and the identification of a novel γ2 transcript variant in adult heart. J. Mol. Cell. Cardiol. 2012, 53:342-349.
-
(2012)
J. Mol. Cell. Cardiol.
, vol.53
, pp. 342-349
-
-
Pinter, K.1
-
14
-
-
84862808312
-
AMPK isoform expression in the normal and failing hearts
-
Kim M., et al. AMPK isoform expression in the normal and failing hearts. J. Mol. Cell. Cardiol. 2012, 52:1066-1073.
-
(2012)
J. Mol. Cell. Cardiol.
, vol.52
, pp. 1066-1073
-
-
Kim, M.1
-
15
-
-
79954517977
-
Structure of mammalian AMPK and its regulation by ADP
-
Xiao B., et al. Structure of mammalian AMPK and its regulation by ADP. Nature 2011, 472:230-233.
-
(2011)
Nature
, vol.472
, pp. 230-233
-
-
Xiao, B.1
-
16
-
-
84885168009
-
AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation
-
Gowans G.J., et al. AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab. 2013, 18:556-566.
-
(2013)
Cell Metab.
, vol.18
, pp. 556-566
-
-
Gowans, G.J.1
-
17
-
-
79959338922
-
AMPK is a direct adenylate charge-regulated protein kinase
-
Oakhill J.S., et al. AMPK is a direct adenylate charge-regulated protein kinase. Science 2011, 332:1433-1435.
-
(2011)
Science
, vol.332
, pp. 1433-1435
-
-
Oakhill, J.S.1
-
18
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie D.G., et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
-
19
-
-
0029910018
-
Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase
-
Hawley S.A., et al. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 1996, 271:27879-27887.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 27879-27887
-
-
Hawley, S.A.1
-
20
-
-
33646420605
-
Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1
-
Sakamoto K., et al. Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKα2 but not AMPKα1. Am. J. Physiol. Endocrinol. Metab. 2006, 290:E780-E788.
-
(2006)
Am. J. Physiol. Endocrinol. Metab.
, vol.290
, pp. E780-E788
-
-
Sakamoto, K.1
-
21
-
-
23044437445
-
2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells
-
2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2005, 2:21-33.
-
(2005)
Cell Metab.
, vol.2
, pp. 21-33
-
-
Woods, A.1
-
22
-
-
33748747706
-
Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro
-
Momcilovic M., et al. Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J. Biol. Chem. 2006, 281:25336-25343.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 25336-25343
-
-
Momcilovic, M.1
-
23
-
-
0345107247
-
Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade
-
Hawley S.A., et al. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2003, 2:28.
-
(2003)
J. Biol.
, vol.2
, pp. 28
-
-
Hawley, S.A.1
-
24
-
-
79959817748
-
Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling
-
Wang J., et al. Activated protein C protects against myocardial ischemic/reperfusion injury through AMP-activated protein kinase signaling. J. Thromb. Haemost. 2011, 9:1308-1317.
-
(2011)
J. Thromb. Haemost.
, vol.9
, pp. 1308-1317
-
-
Wang, J.1
-
25
-
-
84905472350
-
The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury
-
Qi D., et al. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury. J. Clin. Invest. 2014, 124:3540-3550.
-
(2014)
J. Clin. Invest.
, vol.124
, pp. 3540-3550
-
-
Qi, D.1
-
26
-
-
33751229931
-
A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway
-
Xie M., et al. A pivotal role for endogenous TGF-β-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:17378-17383.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 17378-17383
-
-
Xie, M.1
-
27
-
-
79953177835
-
Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo
-
Pulinilkunnil T., et al. Adrenergic regulation of AMP-activated protein kinase in brown adipose tissue in vivo. J. Biol. Chem. 2011, 286:8798-8809.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 8798-8809
-
-
Pulinilkunnil, T.1
-
28
-
-
0141925771
-
Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart
-
Kovacic S., et al. Akt activity negatively regulates phosphorylation of AMP-activated protein kinase in the heart. J. Biol. Chem. 2003, 278:39422-39427.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 39422-39427
-
-
Kovacic, S.1
-
29
-
-
75049085233
-
PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis
-
Djouder N., et al. PKA phosphorylates and inactivates AMPKα to promote efficient lipolysis. EMBO J. 2010, 29:469-481.
-
(2010)
EMBO J.
, vol.29
, pp. 469-481
-
-
Djouder, N.1
-
31
-
-
0029561919
-
5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC
-
Davies S.P., et al. 5'-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett. 1995, 377:421-425.
-
(1995)
FEBS Lett.
, vol.377
, pp. 421-425
-
-
Davies, S.P.1
-
32
-
-
84863012559
-
Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK
-
Lin Y.Y., et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK. Nature 2012, 482:251-255.
-
(2012)
Nature
, vol.482
, pp. 251-255
-
-
Lin, Y.Y.1
-
33
-
-
55549096745
-
SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation
-
Lan F., et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 2008, 283:27628-27635.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 27628-27635
-
-
Lan, F.1
-
34
-
-
84893432818
-
A redox-dependent mechanism for regulation of AMPK activation by thioredoxin1 during energy starvation
-
Shao D., et al. A redox-dependent mechanism for regulation of AMPK activation by thioredoxin1 during energy starvation. Cell Metab. 2014, 19:232-245.
-
(2014)
Cell Metab.
, vol.19
, pp. 232-245
-
-
Shao, D.1
-
35
-
-
0021954140
-
Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart
-
Weiss J., Hiltbrand B. Functional compartmentation of glycolytic versus oxidative metabolism in isolated rabbit heart. J. Clin. Invest. 1985, 75:436-447.
-
(1985)
J. Clin. Invest.
, vol.75
, pp. 436-447
-
-
Weiss, J.1
Hiltbrand, B.2
-
36
-
-
33747039008
-
Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle
-
Kramer H.F., et al. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 2006, 55:2067-2076.
-
(2006)
Diabetes
, vol.55
, pp. 2067-2076
-
-
Kramer, H.F.1
-
37
-
-
84859387660
-
Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase
-
Samovski D., et al. Insulin and AMPK regulate FA translocase/CD36 plasma membrane recruitment in cardiomyocytes via Rab GAP AS160 and Rab8a Rab GTPase. J. Lipid Res. 2012, 53:709-717.
-
(2012)
J. Lipid Res.
, vol.53
, pp. 709-717
-
-
Samovski, D.1
-
38
-
-
79952424287
-
TBC proteins: GAPs for mammalian small GTPase Rab?
-
Fukuda M. TBC proteins: GAPs for mammalian small GTPase Rab?. Biosci. Rep. 2011, 31:159-168.
-
(2011)
Biosci. Rep.
, vol.31
, pp. 159-168
-
-
Fukuda, M.1
-
39
-
-
33846178185
-
Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells
-
Ishikura S., et al. Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem. Biophys. Res. Commun. 2007, 353:1074-1079.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.353
, pp. 1074-1079
-
-
Ishikura, S.1
-
40
-
-
79955766872
-
Insulin-stimulated GLUT4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C
-
Sano H., et al. Insulin-stimulated GLUT4 protein translocation in adipocytes requires the Rab10 guanine nucleotide exchange factor Dennd4C. J. Biol. Chem. 2011, 286:16541-16545.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16541-16545
-
-
Sano, H.1
-
41
-
-
14244268695
-
Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes
-
Yang J., Holman G.D. Insulin and contraction stimulate exocytosis, but increased AMP-activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J. Biol. Chem. 2005, 280:4070-4078.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 4070-4078
-
-
Yang, J.1
Holman, G.D.2
-
42
-
-
0037096151
-
Role of 5'AMP-activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle's disease
-
Nielsen J.N., et al. Role of 5'AMP-activated protein kinase in glycogen synthase activity and glucose utilization: insights from patients with McArdle's disease. J. Physiol. 2002, 541:979-989.
-
(2002)
J. Physiol.
, vol.541
, pp. 979-989
-
-
Nielsen, J.N.1
-
43
-
-
0037219253
-
Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase
-
Halse R., et al. Regulation of glycogen synthase by glucose and glycogen: a possible role for AMP-activated protein kinase. Diabetes 2003, 52:9-15.
-
(2003)
Diabetes
, vol.52
, pp. 9-15
-
-
Halse, R.1
-
44
-
-
11144261702
-
The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase
-
An D., et al. The metabolic "switch" AMPK regulates cardiac heparin-releasable lipoprotein lipase. Am. J. Physiol. Endocrinol. Metab. 2005, 288:E246-E253.
-
(2005)
Am. J. Physiol. Endocrinol. Metab.
, vol.288
, pp. E246-E253
-
-
An, D.1
-
45
-
-
84906227277
-
AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation
-
Zordoky B.N., et al. AMPK-dependent inhibitory phosphorylation of ACC is not essential for maintaining myocardial fatty acid oxidation. Circ. Res. 2014, 115:518-524.
-
(2014)
Circ. Res.
, vol.115
, pp. 518-524
-
-
Zordoky, B.N.1
-
46
-
-
33745204925
-
AMPK alterations in cardiac physiology and pathology: enemy or ally?
-
Dyck J.R., Lopaschuk G.D. AMPK alterations in cardiac physiology and pathology: enemy or ally?. J. Physiol. 2006, 574:95-112.
-
(2006)
J. Physiol.
, vol.574
, pp. 95-112
-
-
Dyck, J.R.1
Lopaschuk, G.D.2
-
47
-
-
61949363051
-
AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin
-
Wang Y., et al. AMP-activated protein kinase deficiency enhances myocardial ischemia/reperfusion injury but has minimal effect on the antioxidant/antinitrative protection of adiponectin. Circulation 2009, 119:835-844.
-
(2009)
Circulation
, vol.119
, pp. 835-844
-
-
Wang, Y.1
-
48
-
-
84865731953
-
Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart
-
Costa R., et al. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. J. Thromb. Haemost. 2012, 10:1736-1744.
-
(2012)
J. Thromb. Haemost.
, vol.10
, pp. 1736-1744
-
-
Costa, R.1
-
49
-
-
84922426604
-
Antithrombin up-regulates AMP-activated protein kinase signalling during myocardial ischaemia/reperfusion injury
-
Ma Y., et al. Antithrombin up-regulates AMP-activated protein kinase signalling during myocardial ischaemia/reperfusion injury. Thromb. Haemost. 2015, 113:338-349.
-
(2015)
Thromb. Haemost.
, vol.113
, pp. 338-349
-
-
Ma, Y.1
-
50
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
-
Matsui Y., et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 2007, 100:914-922.
-
(2007)
Circ. Res.
, vol.100
, pp. 914-922
-
-
Matsui, Y.1
-
51
-
-
34250802633
-
AMPK mediates autophagy during myocardial ischemia in vivo
-
Takagi H., et al. AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 2007, 3:405-407.
-
(2007)
Autophagy
, vol.3
, pp. 405-407
-
-
Takagi, H.1
-
52
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
53
-
-
62649146372
-
TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells
-
Herrero-Martin G., et al. TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J. 2009, 28:677-685.
-
(2009)
EMBO J.
, vol.28
, pp. 677-685
-
-
Herrero-Martin, G.1
-
54
-
-
0036853914
-
Orchestrating the unfolded protein response in health and disease
-
Kaufman R.J. Orchestrating the unfolded protein response in health and disease. J. Clin. Invest. 2002, 110:1389-1398.
-
(2002)
J. Clin. Invest.
, vol.110
, pp. 1389-1398
-
-
Kaufman, R.J.1
-
55
-
-
27144489669
-
AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress
-
Terai K., et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol. Cell. Biol. 2005, 25:9554-9575.
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 9554-9575
-
-
Terai, K.1
-
56
-
-
1842843855
-
Roles of CHOP/GADD153 in endoplasmic reticulum stress
-
Oyadomari S., Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004, 11:381-389.
-
(2004)
Cell Death Differ.
, vol.11
, pp. 381-389
-
-
Oyadomari, S.1
Mori, M.2
-
57
-
-
0034610743
-
Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta
-
Nakagawa T., et al. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 2000, 403:98-103.
-
(2000)
Nature
, vol.403
, pp. 98-103
-
-
Nakagawa, T.1
-
58
-
-
0034723235
-
Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
-
Urano F., et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000, 287:664-666.
-
(2000)
Science
, vol.287
, pp. 664-666
-
-
Urano, F.1
-
59
-
-
79958034358
-
Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury
-
Paiva M.A., et al. Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2011, 300:H2123-H2134.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.300
, pp. H2123-H2134
-
-
Paiva, M.A.1
-
60
-
-
38749137749
-
Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart
-
Miller E.J., et al. Macrophage migration inhibitory factor stimulates AMP-activated protein kinase in the ischaemic heart. Nature 2008, 451:578-582.
-
(2008)
Nature
, vol.451
, pp. 578-582
-
-
Miller, E.J.1
-
61
-
-
67650093501
-
Suppression of 5'-AMP-activated protein kinase activity does not impair recovery of contractile function during reperfusion of ischemic hearts
-
Folmes C.D., et al. Suppression of 5'-AMP-activated protein kinase activity does not impair recovery of contractile function during reperfusion of ischemic hearts. Am. J. Physiol. Heart Circ. Physiol. 2009, 297:H313-H321.
-
(2009)
Am. J. Physiol. Heart Circ. Physiol.
, vol.297
, pp. H313-H321
-
-
Folmes, C.D.1
-
62
-
-
0041707843
-
Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative α2 subunit of AMP-activated protein kinase
-
Xing Y., et al. Glucose metabolism and energy homeostasis in mouse hearts overexpressing dominant negative α2 subunit of AMP-activated protein kinase. J. Biol. Chem. 2003, 278:28372-28377.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 28372-28377
-
-
Xing, Y.1
-
63
-
-
33845416894
-
Role of the α2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia
-
Zarrinpashneh E., et al. Role of the α2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia. Am. J. Physiol. Heart Circ. Physiol. 2006, 291:H2875-H2883.
-
(2006)
Am. J. Physiol. Heart Circ. Physiol.
, vol.291
, pp. H2875-H2883
-
-
Zarrinpashneh, E.1
-
64
-
-
34447513872
-
Dual cardiac contractile effects of the α2-AMPK deletion in low-flow ischemia and reperfusion
-
Carvajal K., et al. Dual cardiac contractile effects of the α2-AMPK deletion in low-flow ischemia and reperfusion. Am. J. Physiol. Heart Circ. Physiol. 2007, 292:H3136-H3147.
-
(2007)
Am. J. Physiol. Heart Circ. Physiol.
, vol.292
, pp. H3136-H3147
-
-
Carvajal, K.1
-
65
-
-
84880373212
-
Limiting cardiac ischemic injury by pharmacological augmentation of macrophage migration inhibitory factor-AMP-activated protein kinase signal transduction
-
Wang J., et al. Limiting cardiac ischemic injury by pharmacological augmentation of macrophage migration inhibitory factor-AMP-activated protein kinase signal transduction. Circulation 2013, 128:225-236.
-
(2013)
Circulation
, vol.128
, pp. 225-236
-
-
Wang, J.1
-
66
-
-
80052322424
-
Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice
-
Morrison A., et al. Acute rosiglitazone treatment is cardioprotective against ischemia-reperfusion injury by modulating AMPK, Akt, and JNK signaling in nondiabetic mice. Am. J. Physiol. Heart Circ. Physiol. 2011, 301:H895-H902.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.301
, pp. H895-H902
-
-
Morrison, A.1
-
67
-
-
84863046265
-
A novel cardioprotective agent in cardiac transplantation: metformin activation of AMP-activated protein kinase decreases acute ischemia-reperfusion injury and chronic rejection
-
Chin J.T., et al. A novel cardioprotective agent in cardiac transplantation: metformin activation of AMP-activated protein kinase decreases acute ischemia-reperfusion injury and chronic rejection. Yale J. Biol. Med. 2011, 84:423-432.
-
(2011)
Yale J. Biol. Med.
, vol.84
, pp. 423-432
-
-
Chin, J.T.1
-
68
-
-
0026661329
-
Acadesine and myocardial protection. Studies of time of administration and dose-response relations in the rat
-
Galinanes M., et al. Acadesine and myocardial protection. Studies of time of administration and dose-response relations in the rat. Circulation 1992, 86:598-608.
-
(1992)
Circulation
, vol.86
, pp. 598-608
-
-
Galinanes, M.1
-
69
-
-
0022778252
-
Biochemical studies: failure of tissue adenosine triphosphate levels to predict recovery of contractile function after controlled reperfusion
-
Rosenkranz E.R., et al. Biochemical studies: failure of tissue adenosine triphosphate levels to predict recovery of contractile function after controlled reperfusion. J. Thorac. Cardiovasc. Surg. 1986, 92:488-501.
-
(1986)
J. Thorac. Cardiovasc. Surg.
, vol.92
, pp. 488-501
-
-
Rosenkranz, E.R.1
-
70
-
-
0031021506
-
Effects of acadesine on myocardial infarction, stroke, and death following surgery. A meta-analysis of the 5 international randomized trials. The Multicenter Study of Perioperative Ischemia (McSPI) Research Group
-
Mangano D.T. Effects of acadesine on myocardial infarction, stroke, and death following surgery. A meta-analysis of the 5 international randomized trials. The Multicenter Study of Perioperative Ischemia (McSPI) Research Group. JAMA 1997, 277:325-332.
-
(1997)
JAMA
, vol.277
, pp. 325-332
-
-
Mangano, D.T.1
-
71
-
-
84869758819
-
Cardiokines: recent progress in elucidating the cardiac secretome
-
Shimano M., et al. Cardiokines: recent progress in elucidating the cardiac secretome. Circulation 2012, 126:e327-e332.
-
(2012)
Circulation
, vol.126
, pp. e327-e332
-
-
Shimano, M.1
-
72
-
-
33845710642
-
HIF1alpha delays premature senescence through the activation of MIF
-
Welford S.M., et al. HIF1alpha delays premature senescence through the activation of MIF. Genes Dev. 2006, 20:3366-3371.
-
(2006)
Genes Dev.
, vol.20
, pp. 3366-3371
-
-
Welford, S.M.1
-
73
-
-
77954959087
-
Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart
-
Ma H., et al. Impaired macrophage migration inhibitory factor-AMP-activated protein kinase activation and ischemic recovery in the senescent heart. Circulation 2010, 122:282-292.
-
(2010)
Circulation
, vol.122
, pp. 282-292
-
-
Ma, H.1
-
74
-
-
72849146175
-
Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion
-
Qi D., et al. Cardiac macrophage migration inhibitory factor inhibits JNK pathway activation and injury during ischemia/reperfusion. J. Clin. Invest. 2009, 119:3807-3816.
-
(2009)
J. Clin. Invest.
, vol.119
, pp. 3807-3816
-
-
Qi, D.1
-
75
-
-
84883300963
-
Compartmentalized protective and detrimental effects of endogenous macrophage migration-inhibitory factor mediated by CXCR2 in a mouse model of myocardial ischemia/reperfusion
-
Liehn E.A., et al. Compartmentalized protective and detrimental effects of endogenous macrophage migration-inhibitory factor mediated by CXCR2 in a mouse model of myocardial ischemia/reperfusion. Arterioscler. Thromb. Vasc. Biol. 2013, 33:2180-2186.
-
(2013)
Arterioscler. Thromb. Vasc. Biol.
, vol.33
, pp. 2180-2186
-
-
Liehn, E.A.1
-
76
-
-
84861693249
-
D-Dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family
-
Merk M., et al. D-Dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family. Cytokine 2012, 59:10-17.
-
(2012)
Cytokine
, vol.59
, pp. 10-17
-
-
Merk, M.1
-
77
-
-
84885035437
-
Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart
-
Li J., et al. Urocortin 2 autocrine/paracrine and pharmacologic effects to activate AMP-activated protein kinase in the heart. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:16133-16138.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 16133-16138
-
-
Li, J.1
-
78
-
-
84866994436
-
Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models
-
Ogura Y., et al. Therapeutic impact of follistatin-like 1 on myocardial ischemic injury in preclinical models. Circulation 2012, 126:1728-1738.
-
(2012)
Circulation
, vol.126
, pp. 1728-1738
-
-
Ogura, Y.1
-
79
-
-
0038682002
-
Mechanisms of TGF-β signaling from cell membrane to the nucleus
-
Shi Y., Massague J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003, 113:685-700.
-
(2003)
Cell
, vol.113
, pp. 685-700
-
-
Shi, Y.1
Massague, J.2
-
80
-
-
54349097731
-
Expression of follistatin-related genes is altered in heart failure
-
Lara-Pezzi E., et al. Expression of follistatin-related genes is altered in heart failure. Endocrinology 2008, 149:5822-5827.
-
(2008)
Endocrinology
, vol.149
, pp. 5822-5827
-
-
Lara-Pezzi, E.1
-
81
-
-
48249155484
-
Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart
-
Oshima Y., et al. Follistatin-like 1 is an Akt-regulated cardioprotective factor that is secreted by the heart. Circulation 2008, 117:3099-3108.
-
(2008)
Circulation
, vol.117
, pp. 3099-3108
-
-
Oshima, Y.1
-
82
-
-
27144457438
-
Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms
-
Shibata R., et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med. 2005, 11:1096-1103.
-
(2005)
Nat. Med.
, vol.11
, pp. 1096-1103
-
-
Shibata, R.1
-
83
-
-
84929416512
-
C1q/TNF-related protein 9 protects against acute myocardial injury through an AdipoR1-AMPK dependent mechanism
-
Kambara T., et al. C1q/TNF-related protein 9 protects against acute myocardial injury through an AdipoR1-AMPK dependent mechanism. Mol. Cell. Biol. 2015, 35:2173-2185.
-
(2015)
Mol. Cell. Biol.
, vol.35
, pp. 2173-2185
-
-
Kambara, T.1
-
84
-
-
84902602873
-
Omentin prevents myocardial ischemic injury through AMP-activated protein kinase- and Akt-dependent mechanisms
-
Kataoka Y., et al. Omentin prevents myocardial ischemic injury through AMP-activated protein kinase- and Akt-dependent mechanisms. J. Am. Coll. Cardiol. 2014, 63:2722-2733.
-
(2014)
J. Am. Coll. Cardiol.
, vol.63
, pp. 2722-2733
-
-
Kataoka, Y.1
-
85
-
-
27644477357
-
AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart
-
Li J., et al. AMP-activated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart. Circ. Res. 2005, 97:872-879.
-
(2005)
Circ. Res.
, vol.97
, pp. 872-879
-
-
Li, J.1
-
86
-
-
84937412004
-
Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart
-
Morrison A., et al. Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J. 2015, 29:408-417.
-
(2015)
FASEB J.
, vol.29
, pp. 408-417
-
-
Morrison, A.1
-
87
-
-
33847399214
-
Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study
-
Sriwijitkamol A., et al. Effect of acute exercise on AMPK signaling in skeletal muscle of subjects with type 2 diabetes: a time-course and dose-response study. Diabetes 2007, 56:836-848.
-
(2007)
Diabetes
, vol.56
, pp. 836-848
-
-
Sriwijitkamol, A.1
-
88
-
-
70350560556
-
Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart
-
Ko H.J., et al. Nutrient stress activates inflammation and reduces glucose metabolism by suppressing AMP-activated protein kinase in the heart. Diabetes 2009, 58:2536-2546.
-
(2009)
Diabetes
, vol.58
, pp. 2536-2546
-
-
Ko, H.J.1
-
89
-
-
79959385996
-
Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice
-
Xie Z., et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011, 60:1770-1778.
-
(2011)
Diabetes
, vol.60
, pp. 1770-1778
-
-
Xie, Z.1
-
90
-
-
77950428827
-
Improved myocardial perfusion in chronic diabetic mice by the up-regulation of pLKB1 and AMPK signaling
-
Kusmic C., et al. Improved myocardial perfusion in chronic diabetic mice by the up-regulation of pLKB1 and AMPK signaling. J. Cell. Biochem. 2010, 109:1033-1044.
-
(2010)
J. Cell. Biochem.
, vol.109
, pp. 1033-1044
-
-
Kusmic, C.1
-
91
-
-
84879621442
-
AMPK, insulin resistance, and the metabolic syndrome
-
Ruderman N.B., et al. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 2013, 123:2764-2772.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 2764-2772
-
-
Ruderman, N.B.1
-
92
-
-
82755172456
-
Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia
-
Seo-Mayer P.W., et al. Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia. Am. J. Physiol. Renal Physiol. 2011, 301:F1346-F1357.
-
(2011)
Am. J. Physiol. Renal Physiol.
, vol.301
, pp. F1346-F1357
-
-
Seo-Mayer, P.W.1
|