-
1
-
-
84874739025
-
Signaling and transcriptional networks in heart development and regeneration
-
Bruneau BG. Signaling and transcriptional networks in heart development and regeneration. Cold Spring Harb Perspect Biol. 2013; 5: a008292. doi: 10.1101/cshperspect.a008292
-
(2013)
Cold Spring Harb Perspect Biol
, vol.5
, pp. a008292
-
-
Bruneau, B.G.1
-
2
-
-
33749361499
-
Gene regulatory networks in the evolution and development of the heart
-
Olson EN. Gene regulatory networks in the evolution and development of the heart. Science (80-). 2006; 313: 1922-1927. http://www.ncbi.nlm.nih. gov/pubmed/17008524
-
(2006)
Science (80
, vol.313
, pp. 1922-1927
-
-
Olson, E.N.1
-
3
-
-
84867073340
-
Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage
-
Wamstad JA, Alexander JM, Truty RM, et al. Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage. Cell. 2012; 151: 206-220. doi: 10.1016/j.cell.2012.07.035
-
(2012)
Cell
, vol.151
, pp. 206-220
-
-
Wamstad, J.A.1
Alexander, J.M.2
Truty, R.M.3
-
4
-
-
84924367823
-
Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration
-
O'Meara C, Wamstad JA, Gladstone R, Fomovsky G, Butty V, Shrikumar A, Gannon J, Boyer L, Lee RT. Transcriptional reversion of cardiac myocyte fate during mammalian cardiac regeneration. Circ Res. 2014. doi: CIRCRESAHA.116.304269 [pii] 10.1161/CIRCRESAHA.116.304269
-
(2014)
Circ Res
-
-
O'Meara, C.1
Wamstad, J.A.2
Gladstone, R.3
Fomovsky, G.4
Butty, V.5
Shrikumar, A.6
Gannon, J.7
Boyer, L.8
Lee, R.T.9
-
5
-
-
84924367822
-
Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease
-
Gilsbach R, Preissl S, Grüning BA, Schnick T, Burger L, Benes V, Würch A, Bönisch U, Günther S, Backofen R, Fleischmann BK, Schübeler D, Hein L. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease. Nat Commun. 2014; 5: 5288. doi: 10.1038/ncomms6288
-
(2014)
Nat Commun
, vol.5
, pp. 5288
-
-
Gilsbach, R.1
Preissl, S.2
Grüning, B.A.3
Schnick, T.4
Burger, L.5
Benes, V.6
Würch, A.7
Bönisch, U.8
Günther, S.9
Backofen, R.10
Fleischmann, B.K.11
Schübeler, D.12
Hein, L.13
-
6
-
-
78650710691
-
Molecular pathways underlying cardiac remodeling during pathophysiological stimulation
-
Kehat I, Molkentin JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 2010; 122: 2727-2735. doi: 10.1161/CIRCULATIONAHA.110.942268
-
(2010)
Circulation
, vol.122
, pp. 2727-2735
-
-
Kehat, I.1
Molkentin, J.D.2
-
7
-
-
84887606655
-
Regulation of fetal gene expression in heart failure
-
Dirkx E, da Costa Martins PA, De Windt LJ. Regulation of fetal gene expression in heart failure. Biochim Biophys Acta. 2013; 1832: 2414-2424. doi: 10.1016/j.bbadis.2013.07.023
-
(1832)
Biochim Biophys Acta
, vol.2013
, pp. 2414-2424
-
-
Dirkx, E.1
Da Costa Martins, P.A.2
De Windt, L.J.3
-
8
-
-
0002537440
-
Cardiac hypertrophy: The good, the bad, and the ugly
-
Frey N, Olson EN. Cardiac hypertrophy: the good, the bad, and the ugly. Annu Rev Physiol. 2003; 65: 45-79. doi: 10.1146/annurev. physiol.65.092101.142243
-
(2003)
Annu Rev Physiol
, vol.65
, pp. 45-79
-
-
Frey, N.1
Olson, E.N.2
-
9
-
-
38149029264
-
The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice
-
Kim Y, Phan D, van Rooij E, Wang DZ, McAnally J, Qi X, Richardson JA, Hill JA, Bassel-Duby R, Olson EN. The MEF2D transcription factor mediates stress-dependent cardiac remodeling in mice. J Clin Invest. 2008; 118: 124-132. doi: 10.1172/JCI33255
-
(2008)
J Clin Invest
, vol.118
, pp. 124-132
-
-
Kim, Y.1
Phan, D.2
Van Rooij, E.3
Wang, D.Z.4
McAnally, J.5
Qi, X.6
Richardson, J.A.7
Hill, J.A.8
Bassel-Duby, R.9
Olson, E.N.10
-
10
-
-
24644519490
-
Fantom consortium; Riken genome exploration research group and genome science group (genome network project core group the transcriptional landscape of the mammalian genome
-
Carninci P, Kasukawa T, Katayama S, et al; FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group). The transcriptional landscape of the mammalian genome. Science. 2005; 309: 1559-1563. doi: 10.1126/science.1112014
-
(2005)
Science
, vol.309
, pp. 1559-1563
-
-
Carninci, P.1
Kasukawa, T.2
Katayama, S.3
-
11
-
-
33645785104
-
A high-resolution map of transcription in the yeast genome
-
David L, Huber W, Granovskaia M, Toedling J, Palm CJ, Bofkin L, Jones T, Davis RW, Steinmetz LM. A high-resolution map of transcription in the yeast genome. Proc Natl Acad Sci USA 2006; 103: 5320-5325. doi: 10.1073/pnas.0601091103
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 5320-5325
-
-
David, L.1
Huber, W.2
Granovskaia, M.3
Toedling, J.4
Palm, C.J.5
Bofkin, L.6
Jones, T.7
Davis, R.W.8
Steinmetz, L.M.9
-
12
-
-
7444233156
-
A gene expression map for the euchromatic genome of drosophila melanogaster
-
Stolc V, Gauhar Z, Mason C, Halasz G, van Batenburg MF, Rifkin SA, Hua S, Herreman T, Tongprasit W, Barbano PE, Bussemaker HJ, White KP. A gene expression map for the euchromatic genome of Drosophila melanogaster. Science. 2004; 306: 655-660. doi: 10.1126/science.1101312
-
(2004)
Science
, vol.306
, pp. 655-660
-
-
Stolc, V.1
Gauhar, Z.2
Mason, C.3
Halasz, G.4
Van Batenburg, M.F.5
Rifkin, S.A.6
Hua, S.7
Herreman, T.8
Tongprasit, W.9
Barbano, P.E.10
Bussemaker, H.J.11
White, K.P.12
-
13
-
-
29444438757
-
Genome-wide transcription analyses in rice using tiling microarrays
-
Li L, Wang X, Stolc V, Li X, Zhang D, Su N, Tongprasit W, Li S, Cheng Z, Wang J, Deng XW. Genome-wide transcription analyses in rice using tiling microarrays. Nat Genet. 2006; 38: 124-129. doi: 10.1038/ng1704
-
(2006)
Nat Genet
, vol.38
, pp. 124-129
-
-
Li, L.1
Wang, X.2
Stolc, V.3
Li, X.4
Zhang, D.5
Su, N.6
Tongprasit, W.7
Li, S.8
Cheng, Z.9
Wang, J.10
Deng, X.W.11
-
14
-
-
79551575924
-
Prediction and characterization of noncoding RNAs in C. Elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data
-
Lu ZJ, Yip KY, Wang G, et al. Prediction and characterization of noncoding RNAs in C. elegans by integrating conservation, secondary structure, and high-throughput sequencing and array data. Genome Res. 2011; 21: 276-285. doi: 10.1101/gr.110189.110
-
(2011)
Genome Res
, vol.21
, pp. 276-285
-
-
Lu, Z.J.1
Yip, K.Y.2
Wang, G.3
-
16
-
-
84879969127
-
Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins
-
Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell. 2013; 154: 240-251. doi: 10.1016/j.cell.2013.06.009
-
(2013)
Cell
, vol.154
, pp. 240-251
-
-
Guttman, M.1
Russell, P.2
Ingolia, N.T.3
Weissman, J.S.4
Lander, E.S.5
-
17
-
-
84865727393
-
The gencode v7 catalog of human long noncoding rnas: Analysis of their gene structure, evolution, and expression
-
Derrien T, Johnson R, Bussotti G, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012; 22: 1775-1789. doi: 10.1101/gr.132159.111
-
(2012)
Genome Res
, vol.22
, pp. 1775-1789
-
-
Derrien, T.1
Johnson, R.2
Bussotti, G.3
-
18
-
-
80052978224
-
Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses
-
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, Rinn JL. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 2011; 25: 1915-1927. doi: 10.1101/gad.17446611
-
(2011)
Genes Dev
, vol.25
, pp. 1915-1927
-
-
Cabili, M.N.1
Trapnell, C.2
Goff, L.3
Koziol, M.4
Tazon-Vega, B.5
Regev, A.6
Rinn, J.L.7
-
19
-
-
84924134321
-
Long noncoding RNAs in cardiovascular diseases
-
Uchida S, Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015; 116: 737-750. doi: 10.1161/CIRCRESAHA.116.302521
-
(2015)
Circ Res
, vol.116
, pp. 737-750
-
-
Uchida, S.1
Dimmeler, S.2
-
20
-
-
84894532371
-
On the classification of long non-coding RNAs
-
Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013; 10: 925-933. doi: 10.4161/rna.24604
-
(2013)
RNA Biol
, vol.10
, pp. 925-933
-
-
Ma, L.1
Bajic, V.B.2
Zhang, Z.3
-
21
-
-
84860742355
-
Noncode v3.0: Integrative annotation of long noncoding rnas
-
Bu D, Yu K, Sun S, et al. NONCODE v3.0: Integrative annotation of long noncoding RNAs. Nucleic Acids Res. 2012; 40: 210-215. doi: 10.1093/nar/gkr1175
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 210-215
-
-
Bu, D.1
Yu, K.2
Sun, S.3
-
22
-
-
84928761213
-
The Landscape of long noncoding RNA classification
-
St. Laurent G, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet. 2015; 31: 239-251. doi: 10.1016/j. tig.2015.03.007
-
(2015)
Trends Genet
, vol.31
, pp. 239-251
-
-
St. Laurent, G.1
Wahlestedt, C.2
Kapranov, P.3
-
23
-
-
84879987789
-
LincRNAs: Genomics, evolution, and mechanisms
-
Ulitsky I, Bartel DP. lincRNAs: genomics, evolution, and mechanisms. Cell. 2013; 154: 26-46. doi: 10.1016/j.cell.2013.06.020
-
(2013)
Cell
, vol.154
, pp. 26-46
-
-
Ulitsky, I.1
Bartel, D.P.2
-
24
-
-
84875183056
-
Structure and function of long noncoding RNAs in epigenetic regulation
-
Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013; 20: 300-307. doi: 10.1038/nsmb.2480
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 300-307
-
-
Mercer, T.R.1
Mattick, J.S.2
-
25
-
-
84861904178
-
Genome regulation by long noncoding RNAs
-
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012; 81: 145-166. http://www.annualreviews.org/doi/abs/10.1146/annurev-biochem-051410-092902
-
(2012)
Annu Rev Biochem
, vol.81
, pp. 145-166
-
-
Rinn, J.L.1
Chang, H.Y.2
-
26
-
-
84905493605
-
LncRNAs: Linking RNA to chromatin
-
Rinn JL. lncRNAs: linking RNA to chromatin. Cold Spring Harb Perspect Biol. 2014; 6. doi: 10.1101/cshperspect.a018614
-
(2014)
Cold Spring Harb Perspect Biol
, vol.6
-
-
Rinn, J.L.1
-
27
-
-
84875200257
-
Long noncoding RNAs: Cellular address codes in development and disease
-
Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell. 2013; 152: 1298-1307. doi: 10.1016/j. cell.2013.02.012
-
(2013)
Cell
, vol.152
, pp. 1298-1307
-
-
Batista, P.J.1
Chang, H.Y.2
-
28
-
-
0030026001
-
Requirement for Xist in X chromosome inactivation
-
Penny GD, Kay GF, Sheardown SA, Rastan S, Brockdorff N. Requirement for Xist in X chromosome inactivation. Nature. 1996; 379: 131-137. doi: 10.1038/379131a0
-
(1996)
Nature
, vol.379
, pp. 131-137
-
-
Penny, G.D.1
Kay, G.F.2
Sheardown, S.A.3
Rastan, S.4
Brockdorff, N.5
-
29
-
-
78751474118
-
Non-coding RNAs as regulators of embryogenesis
-
Pauli A, Rinn JL, Schier AF. Non-coding RNAs as regulators of embryogenesis. Nat Rev Genet. 2011; 12: 136-149. doi: 10.1038/nrg2904
-
(2011)
Nat Rev Genet
, vol.12
, pp. 136-149
-
-
Pauli, A.1
Rinn, J.L.2
Schier, A.F.3
-
30
-
-
84899084041
-
Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline
-
Bao J, Wu J, Schuster AS, Hennig GW, Yan W. Expression profiling reveals developmentally regulated lncRNA repertoire in the mouse male germline. Biol Reprod. 2013; 89: 107. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrievedb=PubMeddopt=Citationlist-uids=24048575
-
(2013)
Biol Reprod
, vol.89
, pp. 107
-
-
Bao, J.1
Wu, J.2
Schuster, A.S.3
Hennig, G.W.4
Yan, W.5
-
31
-
-
84891757415
-
Multiple knockout mouse models reveal lincRNAs are required for life and brain development
-
Sauvageau M, Goff LA, Lodato S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013; 2: e01749. doi: 10.7554/eLife.01749
-
(2013)
Elife
, vol.2
, pp. e01749
-
-
Sauvageau, M.1
Goff, L.A.2
Lodato, S.3
-
32
-
-
84872135457
-
Control of somatic tissue differentiation by the long non-coding RNA tincr
-
Kretz M, Siprashvili Z, Chu C, et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature. 2013; 493: 231-235. http://www.ncbi.nlm.nih.gov/pubmed/23201690
-
(2013)
Nature
, vol.493
, pp. 231-235
-
-
Kretz, M.1
Siprashvili, Z.2
Chu, C.3
-
33
-
-
84868683051
-
Regulation of mammalian cell differentiation by long non-coding RNAs
-
Hu W, Alvarez-Dominguez JR, Lodish HF. Regulation of mammalian cell differentiation by long non-coding RNAs. EMBO Rep. 2012; 13: 971-983. doi: 10.1038/embor.2012.145
-
(2012)
Embo Rep
, vol.13
, pp. 971-983
-
-
Hu, W.1
Alvarez-Dominguez, J.R.2
Lodish, H.F.3
-
34
-
-
80052869283
-
LincRNAs act in the circuitry controlling pluripotency and differentiation
-
Guttman M, Donaghey J, Carey BW, et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature. 2011; 477: 295-300. http://www.ncbi.nlm.nih.gov/pubmed/21874018
-
(2011)
Nature
, vol.477
, pp. 295-300
-
-
Guttman, M.1
Donaghey, J.2
Carey, B.W.3
-
35
-
-
84876003231
-
Long noncoding RNA malat1 controls cell cycle progression by regulating the expression of oncogenic transcription factor b-myb
-
Tripathi V, Shen Z, Chakraborty A, Giri S, Freier SM, Wu X, Zhang Y, Gorospe M, Prasanth SG, Lal A, Prasanth K V. Long noncoding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet. 2013; 9: e1003368.
-
(2013)
PLoS Genet
, vol.9
, pp. e1003368
-
-
Tripathi, V.1
Shen, Z.2
Chakraborty, A.3
Giri, S.4
Freier, S.M.5
Wu, X.6
Zhang, Y.7
Gorospe, M.8
Prasanth, S.G.9
Lal, A.10
Prasanth, K.V.11
-
36
-
-
84889881250
-
Cell cycle regulation by long non-coding RNAs
-
Kitagawa M, Kitagawa K, Kotake Y, Niida H, Ohhata T. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci. 2013; 70: 4785-4794. doi: 10.1007/s00018-013-1423-0
-
(2013)
Cell Mol Life Sci
, vol.70
, pp. 4785-4794
-
-
Kitagawa, M.1
Kitagawa, K.2
Kotake, Y.3
Niida, H.4
Ohhata, T.5
-
37
-
-
84897993537
-
Regulation of metabolism by long, non-coding RNAs
-
Kornfeld JW, Brüning JC. Regulation of metabolism by long, non-coding RNAs. Front Genet. 2014; 5: 57. doi: 10.3389/fgene.2014.00057
-
(2014)
Front Genet
, vol.5
, pp. 57
-
-
Kornfeld, J.W.1
Brüning, J.C.2
-
38
-
-
79957840356
-
Long noncoding RNAs and human disease
-
Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol. 2011; 21: 354-361. doi: 10.1016/j.tcb.2011.04.001
-
(2011)
Trends Cell Biol
, vol.21
, pp. 354-361
-
-
Wapinski, O.1
Chang, H.Y.2
-
39
-
-
84884482165
-
Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus
-
Jacob MD, Audas TE, Uniacke J, Trinkle-Mulcahy L, Lee S. Environmental cues induce a long noncoding RNA-dependent remodeling of the nucleolus. Mol Biol Cell. 2013; 24: 2943-2953. doi: 10.1091/mbc.E13-04-0223
-
(2013)
Mol Biol Cell
, vol.24
, pp. 2943-2953
-
-
Jacob, M.D.1
Audas, T.E.2
Uniacke, J.3
Trinkle-Mulcahy, L.4
Lee, S.5
-
40
-
-
84911903523
-
LncRNA directs cooperative epigenetic regulation downstream of chemokine signals
-
Xing Z, Lin A, Li C, Liang K, Wang S, Liu Y, Park PK, Qin L, Wei Y, Hawke DH, Hung MC, Lin C, Yang L. lncRNA directs cooperative epigenetic regulation downstream of chemokine signals. Cell. 2014; 159: 1110-1125. doi: 10.1016/j.cell.2014.10.013
-
(2014)
Cell
, vol.159
, pp. 1110-1125
-
-
Xing, Z.1
Lin, A.2
Li, C.3
Liang, K.4
Wang, S.5
Liu, Y.6
Park, P.K.7
Qin, L.8
Wei, Y.9
Hawke, D.H.10
Hung, M.C.11
Lin, C.12
Yang, L.13
-
41
-
-
80053045739
-
Molecular mechanisms of long noncoding RNAs
-
elsevier.com/retrieve/pii/S1097276511006368
-
Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011; 43: 904-914. http://linkinghub.elsevier.com/retrieve/pii/S1097276511006368
-
(2011)
Mol Cell
, vol.43
, pp. 904-914
-
-
Wang, K.C.1
Chang, H.Y.2
-
42
-
-
79957510873
-
Long non-coding RNAs and enhancers
-
ørom UA, Shiekhattar R. Long non-coding RNAs and enhancers. Curr Opin Genet Dev. 2011; 21: 194-198. doi: 10.1016/j.gde.2011.01.020
-
(2011)
Curr Opin Genet Dev
, vol.21
, pp. 194-198
-
-
Ørom, U.A.1
Shiekhattar, R.2
-
43
-
-
77957885435
-
Linc-ing long noncoding RNAs and enhancer function
-
Mattick JS. Linc-ing long noncoding RNAs and enhancer function. Dev Cell. 2010; 19: 485-486. doi: 10.1016/j.devcel.2010.10.003
-
(2010)
Dev Cell
, vol.19
, pp. 485-486
-
-
Mattick, J.S.1
-
44
-
-
84920516971
-
Enhancer RNAs a class of long noncoding RNAs synthesized at enhancers
-
Kim T, Hemberg M, Gray JM. Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harb Perspect Biol. 2015; 7: a018622. doi: 10.1101/cshperspect.a018622
-
(2015)
Cold Spring Harb Perspect Biol
, vol.7
, pp. a018622
-
-
Kim, T.1
Hemberg, M.2
Gray, J.M.3
-
45
-
-
84856492490
-
Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors
-
Ng SY, Johnson R, Stanton LW. Human long non-coding RNAs promote pluripotency and neuronal differentiation by association with chromatin modifiers and transcription factors. EMBO J. 2012; 31: 522-533. http://www.ncbi.nlm.nih.gov/pubmed/22193719
-
(2012)
Embo J.
, vol.31
, pp. 522-533
-
-
Ng, S.Y.1
Johnson, R.2
Stanton, L.W.3
-
46
-
-
84873829893
-
The tissue-specific lncrna fendrr is an essential regulator of heart and body wall development in the mouse
-
Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, Macura K, Bläss G, Kellis M, Werber M, Herrmann BG. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013; 24: 206-214. doi: 10.1016/j.devcel.2012.12.012
-
(2013)
Dev Cell
, vol.24
, pp. 206-214
-
-
Grote, P.1
Wittler, L.2
Hendrix, D.3
Koch, F.4
Währisch, S.5
Beisaw, A.6
Macura, K.7
Bläss, G.8
Kellis, M.9
Werber, M.10
Herrmann, B.G.11
-
47
-
-
84873300214
-
Braveheart, a long noncoding RNA required for cardiovascular lineage commitment
-
Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013; 152: 570-583. doi: S0092-8674(13)00004-4 [pii] 10.1016/j.cell.2013.01.003
-
(2013)
Cell
, vol.152
, pp. 570-583
-
-
Klattenhoff, C.A.1
Scheuermann, J.C.2
Surface, L.E.3
-
48
-
-
80054715378
-
A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA
-
Cesana M, Cacchiarelli D, Legnini I, Santini T, Sthandier O, Chinappi M, Tramontano A, Bozzoni I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell. 2011; 147: 358-369. doi: 10.1016/j.cell.2011.09.028
-
(2011)
Cell
, vol.147
, pp. 358-369
-
-
Cesana, M.1
Cacchiarelli, D.2
Legnini, I.3
Santini, T.4
Sthandier, O.5
Chinappi, M.6
Tramontano, A.7
Bozzoni, I.8
-
49
-
-
84876367541
-
Endogenous mirna sponge lincrna-ror regulates oct4 nanog and sox2 in human embryonic stem cell self-renewal
-
Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H. Endogenous miRNA Sponge lincRNA-RoR Regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell. 2013; 25: 69-80. doi: 10.1016/j.devcel.2013.03.002
-
(2013)
Dev Cell
, vol.25
, pp. 69-80
-
-
Wang, Y.1
Xu, Z.2
Jiang, J.3
Xu, C.4
Kang, J.5
Xiao, L.6
Wu, M.7
Xiong, J.8
Guo, X.9
Liu, H.10
-
50
-
-
77956927823
-
The nuclear-retained noncoding RNA malat1 regulates alteRNAtive splicing by modulating sr splicing factor phosphorylation
-
Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010; 39: 925-938. doi: 10.1016/j.molcel.2010.08.011
-
(2010)
Mol Cell
, vol.39
, pp. 925-938
-
-
Tripathi, V.1
Ellis, J.D.2
Shen, Z.3
Song, D.Y.4
Pan, Q.5
Watt, A.T.6
Freier, S.M.7
Bennett, C.F.8
Sharma, A.9
Bubulya, P.A.10
Blencowe, B.J.11
Prasanth, S.G.12
Prasanth, K.V.13
-
51
-
-
79951495822
-
Lncrnas transactivate stau1-mediated mRNA decay by duplexing with 3' utrs via alu elements
-
Gong C, Maquat LE. lncRNAs transactivate STAU1-mediated mRNA decay by duplexing with 3' UTRs via Alu elements. Nature. 2011; 470: 284-288. doi: 10.1038/nature09701
-
(2011)
Nature
, vol.470
, pp. 284-288
-
-
Gong, C.1
Maquat, L.E.2
-
52
-
-
84865379361
-
LincRNA-p21 suppresses target mRNA translation
-
Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M. LincRNA-p21 suppresses target mRNA translation. Mol Cell. 2012; 47: 648-655. doi: 10.1016/j. molcel.2012.06.027
-
(2012)
Mol Cell
, vol.47
, pp. 648-655
-
-
Yoon, J.H.1
Abdelmohsen, K.2
Srikantan, S.3
Yang, X.4
Martindale, J.L.5
De S Huarte, M.6
Zhan, M.7
Becker, K.G.8
Gorospe, M.9
-
53
-
-
33748621746
-
Making or breaking the heart: From lineage determination to morphogenesis
-
Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell. 2006; 126: 1037-1048. http://www.ncbi.nlm.nih.gov/pubmed/16990131
-
(2006)
Cell
, vol.126
, pp. 1037-1048
-
-
Srivastava, D.1
-
54
-
-
39349106325
-
Differentiation of embryonic stem cells to clinically relevant populations: Lessons from embryonic development
-
Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008; 132: 661-680. doi: 10.1016/j.cell.2008.02.008
-
(2008)
Cell
, vol.132
, pp. 661-680
-
-
Murry, C.E.1
Keller, G.2
-
55
-
-
78649980258
-
Myocardial lineage development
-
Evans SM, Yelon D, Conlon FL, Kirby ML. Myocardial lineage development. Circ Res. 2010; 107: 1428-1444. http://www.ncbi.nlm.nih.gov/pubmed/21148449
-
(2010)
Circ Res
, vol.107
, pp. 1428-1444
-
-
Evans, S.M.1
Yelon, D.2
Conlon, F.L.3
Kirby, M.L.4
-
56
-
-
39749191367
-
The developmental genetics of congenital heart disease
-
Bruneau BG. The developmental genetics of congenital heart disease. Nature. 2008; 451: 943-948. http://www.ncbi.nlm.nih.gov/pubmed/18288184
-
(2008)
Nature
, vol.451
, pp. 943-948
-
-
Bruneau, B.G.1
-
57
-
-
84898461301
-
Differential expression profile of long non-coding RNAs during differentiation of cardiomyocytes
-
Zhu S, Hu X, Han S, Yu Z, Peng Y, Zhu J, Liu X, Qian L, Zhu C, Li M, Song G, Guo X. Differential expression profile of long non-coding RNAs during differentiation of cardiomyocytes. Int J Med Sci. 2014; 11: 500-507. doi: 10.7150/ijms.7849
-
(2014)
Int J Med Sci
, vol.11
, pp. 500-507
-
-
Zhu, S.1
Hu, X.2
Han, S.3
Yu, Z.4
Peng, Y.5
Zhu, J.6
Liu, X.7
Qian, L.8
Zhu, C.9
Li, M.10
Song, G.11
Guo, X.12
-
58
-
-
84895558448
-
Long noncoding RNAs expression profile of the developing mouse heart
-
Zhu JG, Shen YH, Liu HL, Liu M, Shen YQ, Kong XQ, Song GX, Qian LM. Long noncoding RNAs expression profile of the developing mouse heart. J Cell Biochem. 2014; 115: 910-918. doi: 10.1002/jcb.24733
-
(2014)
J Cell Biochem
, vol.115
, pp. 910-918
-
-
Zhu, J.G.1
Shen, Y.H.2
Liu, H.L.3
Liu, M.4
Shen, Y.Q.5
Kong, X.Q.6
Song, G.X.7
Qian, L.M.8
-
59
-
-
84906314395
-
Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs
-
Matkovich SJ, Edwards JR, Grossenheider TC, de Guzman Strong C, Dorn GW II. Epigenetic coordination of embryonic heart transcription by dynamically regulated long noncoding RNAs. Proc Natl Acad Sci USA 2014; 111: 12264-12269. doi: 10.1073/pnas.1410622111
-
(2014)
Proc Natl Acad Sci USA
, vol.111
, pp. 12264-12269
-
-
Matkovich, S.J.1
Edwards, J.R.2
Grossenheider, T.C.3
De Guzman Strong, C.4
Dorn, I.I.G.W.5
-
60
-
-
79952374113
-
Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation
-
Bondue A, Tännler S, Chiapparo G, Chabab S, Ramialison M, Paulissen C, Beck B, Harvey R, Blanpain C. Defining the earliest step of cardiovascular progenitor specification during embryonic stem cell differentiation. J Cell Biol. 2011; 192: 751-765. doi: 10.1083/jcb.201007063
-
(2011)
J Cell Biol
, vol.192
, pp. 751-765
-
-
Bondue, A.1
Tännler, S.2
Chiapparo, G.3
Chabab, S.4
Ramialison, M.5
Paulissen, C.6
Beck, B.7
Harvey, R.8
Blanpain, C.9
-
61
-
-
48649087364
-
Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification
-
Bondue A, Lapouge G, Paulissen C, Semeraro C, Iacovino M, Kyba M, Blanpain C. Mesp1 acts as a master regulator of multipotent cardiovascular progenitor specification. Cell Stem Cell. 2008; 3: 69-84. doi: 10.1016/j. stem.2008.06.009
-
(2008)
Cell Stem Cell
, vol.3
, pp. 69-84
-
-
Bondue, A.1
Lapouge, G.2
Paulissen, C.3
Semeraro, C.4
Iacovino, M.5
Kyba, M.6
Blanpain, C.7
-
62
-
-
78751662908
-
The polycomb complex prc2 and its mark in life
-
Margueron R, Reinberg D. The Polycomb complex PRC2 and its mark in life. Nature. 2011; 469: 343-349. doi: 10.1038/nature09784
-
(2011)
Nature
, vol.469
, pp. 343-349
-
-
Margueron, R.1
Reinberg, D.2
-
63
-
-
70349469565
-
Mechanisms of polycomb gene silencing: Knowns and unknowns
-
Simon JA, Kingston RE. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat Rev Mol Cell Biol. 2009; 10: 697-708. doi: 10.1038/nrm2763
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 697-708
-
-
Simon, J.A.1
Kingston, R.E.2
-
64
-
-
84862777974
-
Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis
-
Delgado-Olguín P, Huang Y, Li X, Christodoulou D, Seidman CE, Seidman JG, Tarakhovsky A, Bruneau BG. Epigenetic repression of cardiac progenitor gene expression by Ezh2 is required for postnatal cardiac homeostasis. Nat Genet. 2012; 44: 343-347. doi: 10.1038/ng.1068
-
(2012)
Nat Genet
, vol.44
, pp. 343-347
-
-
Delgado-Olguín, P.1
Huang, Y.2
Li, X.3
Christodoulou, D.4
Seidman, C.E.5
Seidman, J.G.6
Tarakhovsky, A.7
Bruneau, B.G.8
-
65
-
-
84856707310
-
Polycomb repressive complex 2 regulates normal development of the mouse heart
-
He A, Ma Q, Cao J, et al. Polycomb repressive complex 2 regulates normal development of the mouse heart. Circ Res. 2012; 110: 406-415. doi: 10.1161/CIRCRESAHA.111.252205
-
(2012)
Circ Res
, vol.110
, pp. 406-415
-
-
He, A.1
Ma, Q.2
Cao, J.3
-
66
-
-
84901504177
-
Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA
-
Bell RD, Long X, Lin M, Bergmann JH, Nanda V, Cowan SL, Zhou Q, Han Y, Spector DL, Zheng D, Miano JM. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014; 34: 1249-1259. doi: 10.1161/ATVBAHA.114.303240
-
(2014)
Arterioscler Thromb Vasc Biol
, vol.34
, pp. 1249-1259
-
-
Bell, R.D.1
Long, X.2
Lin, M.3
Bergmann, J.H.4
Nanda, V.5
Cowan, S.L.6
Zhou, Q.7
Han, Y.8
Spector, D.L.9
Zheng, D.10
Miano, J.M.11
-
67
-
-
84901379612
-
The smooth long noncoding RNA sencr
-
Thum T, Kumarswamy R. The smooth long noncoding RNA SENCR. Arterioscler Thromb Vasc Biol. 2014; 34: 1124-1125. doi: 10.1161/ATVBAHA.114.303504
-
(2014)
Arterioscler Thromb Vasc Biol
, vol.34
, pp. 1124-1125
-
-
Thum, T.1
Kumarswamy, R.2
-
68
-
-
49649086600
-
Fli1 acts at the top of the transcriptional network driving blood and endothelial development
-
Liu F, Walmsley M, Rodaway A, Patient R. Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol. 2008; 18: 1234-1240. doi: 10.1016/j.cub.2008.07.048
-
(2008)
Curr Biol
, vol.18
, pp. 1234-1240
-
-
Liu, F.1
Walmsley, M.2
Rodaway, A.3
Patient, R.4
-
69
-
-
84899993786
-
Long noncoding RNA malat1 regulates endothelial cell function and vessel growth
-
Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S. Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res. 2014; 114: 1389-1397. doi: 10.1161/CIRCRESAHA.114.303265
-
(2014)
Circ Res
, vol.114
, pp. 1389-1397
-
-
Michalik, K.M.1
You, X.2
Manavski, Y.3
Doddaballapur, A.4
Zörnig, M.5
Braun, T.6
John, D.7
Ponomareva, Y.8
Chen, W.9
Uchida, S.10
Boon, R.A.11
Dimmeler, S.12
-
70
-
-
0344429906
-
Malat-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer
-
Ji P, Diederichs S, Wang W, Böing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Müller-Tidow C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003; 22: 8031-8041. doi: 10.1038/sj.onc.1206928
-
(2003)
Oncogene
, vol.22
, pp. 8031-8041
-
-
Ji, P.1
Diederichs, S.2
Wang, W.3
Böing, S.4
Metzger, R.5
Schneider, P.M.6
Tidow, N.7
Brandt, B.8
Buerger, H.9
Bulk, E.10
Thomas, M.11
Berdel, W.E.12
Serve, H.13
Müller-Tidow, C.14
-
71
-
-
81055140863
-
Rosenfeld MG. McRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs
-
Yang L, Lin C, Liu W, Zhang J, Ohgi KA, Grinstein JD, Dorrestein PC, Rosenfeld MG. ncRNA-and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell. 2011; 147: 773-788. doi: 10.1016/j.cell.2011.08.054
-
(2011)
Cell
, vol.147
, pp. 773-788
-
-
Yang, L.1
Lin, C.2
Liu, W.3
Zhang, J.4
Ohgi, K.A.5
Grinstein, J.D.6
Dorrestein, P.C.7
-
72
-
-
84899653138
-
Lincing malat1 and angiogenesis
-
Thum T, Fiedler J. LINCing MALAT1 and angiogenesis. Circ Res. 2014; 114: 1366-1368. doi: 10.1161/CIRCRESAHA.114.303896
-
(2014)
Circ Res
, vol.114
, pp. 1366-1368
-
-
Thum, T.1
Fiedler, J.2
-
73
-
-
84864047695
-
Loss of the abundant nuclear non-coding RNA malat1 is compatible with life and development
-
Eismann M, Gutschner T, Hämmerle M, Günther S, Caudron-Herger M, Gros M, Schirmacher P, Rippe K, Braun T, Zörnig M, Diederichs S. Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol. 2012; 9: 1076-1087. doi: 10.4161/rna.21089
-
(2012)
RNA Biol
, vol.9
, pp. 1076-1087
-
-
Eismann, M.1
Gutschner, T.2
Hämmerle, M.3
Günther, S.4
Caudron-Herger, M.5
Gros, M.6
Schirmacher, P.7
Rippe, K.8
Braun, T.9
Zörnig, M.10
Diederichs, S.11
-
74
-
-
84864315112
-
The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult
-
S2211-1247(12) 00163-5 [pii]
-
Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL. The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep. 2012; 2: 111-123. doi: S2211-1247(12)00163-5 [pii] 10.1016/j.celrep.2012.06.003
-
(2012)
Cell Rep
, vol.2
, pp. 111-123
-
-
Zhang, B.1
Arun, G.2
Mao, Y.S.3
Lazar, Z.4
Hung, G.5
Bhattacharjee, G.6
Xiao, X.7
Booth, C.J.8
Wu, J.9
Zhang, C.10
Spector, D.L.11
-
75
-
-
60349117938
-
Congenital cardiac disease in the newborn infant: Past, present, and future
-
vi
-
Sadowski SL. Congenital cardiac disease in the newborn infant: past, present, and future. Crit Care Nurs Clin North Am. 2009; 21: 37-48, vi. doi: 10.1016/j.ccell.2008.10.001
-
(2009)
Crit Care Nurs Clin North Am
, vol.21
, pp. 37-48
-
-
Sadowski, S.L.1
-
76
-
-
84885801238
-
Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect
-
Song G, Shen Y, Zhu J, Liu H, Liu M, Shen YQ, Zhu S, Kong X, Yu Z, Qian L. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One. 2013; 8: e77492. doi: 10.1371/journal.pone.0077492
-
(2013)
Plos One
, vol.8
, pp. e77492
-
-
Song, G.1
Shen, Y.2
Zhu, J.3
Liu, H.4
Liu, M.5
Shen, Y.Q.6
Zhu, S.7
Kong, X.8
Yu, Z.9
Qian, L.10
-
77
-
-
33751252258
-
Differential gene expression profiling in genetic and multifactorial cardiovascular diseases
-
Nanni L, Romualdi C, Maseri A, Lanfranchi G. Differential gene expression profiling in genetic and multifactorial cardiovascular diseases. J Mol Cell Cardiol. 2006; 41: 934-948. doi: 10.1016/j.yjmcc.2006.08.009
-
(2006)
J Mol Cell Cardiol
, vol.41
, pp. 934-948
-
-
Nanni, L.1
Romualdi, C.2
Maseri, A.3
Lanfranchi, G.4
-
78
-
-
84856083581
-
Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts
-
Lee JH, Gao C, Peng G, Greer C, Ren S, Wang Y, Xiao X. Analysis of transcriptome complexity through RNA sequencing in normal and failing murine hearts. Circ Res. 2011; 109: 1332-1341. doi: 10.1161/CIRCRESAHA.111.249433
-
(2011)
Circ Res
, vol.109
, pp. 1332-1341
-
-
Lee, J.H.1
Gao, C.2
Peng, G.3
Greer, C.4
Ren, S.5
Wang, Y.6
Xiao, X.7
-
79
-
-
84890742766
-
Compared analysis of lncrna expression profiling in pdk1 gene knockout mice at two time points
-
Liu H, Song G, Zhou L, Hu X, Liu M, Nie J, Lu S, Wu X, Cao Y, Tao L, Chen L, Qian L. Compared analysis of LncRNA expression profiling in pdk1 gene knockout mice at two time points. Cell Physiol Biochem. 2013; 32: 1497-1508. doi: 10.1159/000356586
-
(2013)
Cell Physiol Biochem
, vol.32
, pp. 1497-1508
-
-
Liu, H.1
Song, G.2
Zhou, L.3
Hu, X.4
Liu, M.5
Nie, J.6
Lu, S.7
Wu, X.8
Cao, Y.9
Tao, L.10
Chen, L.11
Qian, L.12
-
80
-
-
0141737071
-
Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia
-
Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanović S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanović A, Alessi DR. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J. 2003; 22: 4666-4676. doi: 10.1093/emboj/cdg469
-
(2003)
Embo J.
, vol.22
, pp. 4666-4676
-
-
Mora, A.1
Davies, A.M.2
Bertrand, L.3
Sharif, I.4
Budas, G.R.5
Jovanović, S.6
Mouton, V.7
Kahn, C.R.8
Lucocq, J.M.9
Gray, G.A.10
Jovanović, A.11
Alessi, D.R.12
-
81
-
-
79851487698
-
PDK1 plays a critical role in regulating cardiac function in mice and human
-
Di RM, Feng QT, Chang Z, Luan Q, Zhang YY, Huang J, Li XL, Yang ZZ. PDK1 plays a critical role in regulating cardiac function in mice and human. Chin Med J. 2010; 123: 2358-2363. http://www.ncbi.nlm.nih. gov/entrez/query.fcgi?cmd=Retrievedb=PubMeddopt=Citationli st-uids=21034549
-
(2010)
Chin Med J.
, vol.123
, pp. 2358-2363
-
-
Di, R.M.1
Feng, Q.T.2
Chang, Z.3
Luan, Q.4
Zhang, Y.Y.5
Huang, J.6
Li, X.L.7
Yang, Z.Z.8
-
82
-
-
84895552736
-
Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support
-
Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL, Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014; 129: 1009-1021. doi: 10.1161/CIRCULATIONAHA.113.003863
-
(2014)
Circulation
, vol.129
, pp. 1009-1021
-
-
Yang, K.C.1
Yamada, K.A.2
Patel, A.Y.3
Topkara, V.K.4
George, I.5
Cheema, F.H.6
Ewald, G.A.7
Mann, D.L.8
Nerbonne, J.M.9
-
83
-
-
84899619022
-
Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure
-
Li D, Chen G, Yang J, Fan X, Gong Y, Xu G, Cui Q, Geng B. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One. 2013; 8: e77938. doi: 10.1371/journal.pone.0077938 PONE-D-13-21514 [pii
-
(2013)
Plos One
, vol.8
, pp. e77938
-
-
Li, D.1
Chen, G.2
Yang, J.3
Fan, X.4
Gong, Y.5
Xu, G.6
Cui, Q.7
Geng, B.8
-
84
-
-
84900844231
-
Circulating long noncoding RNA, lipcar, predicts survival in patients with heart failure
-
Kumarswamy R, Bauters C, Volkmann I, Maury F, Fetisch J, Holzmann A, Lemesle G, de Groote P, Pinet F, Thum T. Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res. 2014; 114: 1569-1575. doi: 10.1161/CIRCRESAHA.114.303915
-
(2014)
Circ Res
, vol.114
, pp. 1569-1575
-
-
Kumarswamy, R.1
Bauters, C.2
Volkmann, I.3
Maury, F.4
Fetisch, J.5
Holzmann, A.6
Lemesle, G.7
De Groote, P.8
Pinet, F.9
Thum, T.10
-
85
-
-
84928233559
-
Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heartspecific long non-coding RNAs
-
Ounzain S, Micheletti R, Beckmann T, et al. Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heartspecific long non-coding RNAs. Eur Hear J. 2014. doi: 10.1093/eurheartj/ehu180
-
(2014)
Eur Hear J.
-
-
Ounzain, S.1
Micheletti, R.2
Beckmann, T.3
-
86
-
-
84899648077
-
Expression profiling and ontology analysis of long noncoding RNAs in post-ischemic heart and their implied roles in ischemia/reperfusion injury
-
Liu Y, Li G, Lu H, Li W, Li X, Liu H, Li T, Yu B. Expression profiling and ontology analysis of long noncoding RNAs in post-ischemic heart and their implied roles in ischemia/reperfusion injury. Gene. 2014; 543: 15-21. doi: S0378-1119(14)00416-8 [pii] 10.1016/j.gene.2014.04.016
-
(2014)
Gene
, vol.543
, pp. 15-21
-
-
Liu, Y.1
Li, G.2
Lu, H.3
Li, W.4
Li, X.5
Liu, H.6
Li, T.7
Yu, B.8
-
87
-
-
41449086790
-
Cardiac plasticity
-
Hill JA, Olson EN. Cardiac plasticity. N Engl J Med. 2008; 358: 1370-1380. doi: 10.1056/NEJMra072139
-
(2008)
N Engl J Med
, vol.358
, pp. 1370-1380
-
-
Hill, J.A.1
Olson, E.N.2
-
88
-
-
84899565201
-
Expression profiling of long noncoding rnas and the dynamic changes of lncrna-nr024118 and cdkn1c in angiotensin II-treated cardiac fibroblasts
-
Jiang XY, Ning QL. Expression profiling of long noncoding RNAs and the dynamic changes of lncRNA-NR024118 and Cdkn1c in angiotensin II-treated cardiac fibroblasts. Int J Clin Exp Pathol. 2014; 7: 1325-1336. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve& db=PubM ed& dopt=Citation& list-uids=24817929
-
(2014)
Int J Clin Exp Pathol
, vol.7
, pp. 1325-1336
-
-
Jiang, X.Y.1
Ning, Q.L.2
-
90
-
-
0034030487
-
Clinical significance of the bicuspid aortic valve
-
Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000; 83: 81-85. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Ret rieve& db=PubMed& dopt=Citation& list-uids=10618341
-
(2000)
Heart
, vol.83
, pp. 81-85
-
-
Ward, C.1
-
91
-
-
21044437380
-
Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies
-
Freeman RV, Otto CM. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 2005; 111: 3316-3326. doi: 10.1161/CIRCULATIONAHA.104.486738
-
(2005)
Circulation
, vol.111
, pp. 3316-3326
-
-
Freeman, R.V.1
Otto, C.M.2
-
92
-
-
84900310934
-
The long non-coding hotair is modulated by cyclic stretch and wnt/β-catenin in human aortic valve cells and is a novel repressor of calcification genes
-
Carrion K, Dyo J, Patel V, Sasik R, Mohamed SA, Hardiman G, Nigam V. The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes. PLoS One. 2014; 9: e96577. doi: 10.1371/journal. pone.0096577
-
(2014)
Plos One
, vol.9
, pp. e96577
-
-
Carrion, K.1
Dyo, J.2
Patel, V.3
Sasik, R.4
Mohamed, S.A.5
Hardiman, G.6
Nigam, V.7
-
93
-
-
34250729138
-
Functional demarcation of active and silent chromatin domains in human hox loci by noncoding rnas
-
Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA, Farnham PJ, Segal E, Chang HY. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell. 2007; 129: 1311-1323. doi: 10.1016/j. cell.2007.05.022
-
(2007)
Cell
, vol.129
, pp. 1311-1323
-
-
Rinn, J.L.1
Kertesz, M.2
Wang, J.K.3
Squazzo, S.L.4
Xu, X.5
Brugmann, S.A.6
Goodnough, L.H.7
Helms, J.A.8
Farnham, P.J.9
Segal, E.10
Chang, H.Y.11
-
94
-
-
77951118936
-
Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis
-
Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010; 464: 1071-1076. doi: 10.1038/nature08975
-
(2010)
Nature
, vol.464
, pp. 1071-1076
-
-
Gupta, R.A.1
Shah, N.2
Wang, K.C.3
-
95
-
-
84865790047
-
An integrated encyclopedia of DNA elements in the human genome
-
ENCODE project consortium nature 11247 [pii]
-
ENCODE project consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012; 489: 57-74. doi: nature11247 [pii] 10.1038/nature11247
-
(2012)
Nature
, vol.489
, pp. 57-74
-
-
-
96
-
-
77949775636
-
Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice
-
Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM, Pennacchio LA. Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 2010; 464: 409-412. doi: 10.1038/nature08801
-
(2010)
Nature
, vol.464
, pp. 409-412
-
-
Visel, A.1
Zhu, Y.2
May, D.3
Afzal, V.4
Gong, E.5
Attanasio, C.6
Blow, M.J.7
Cohen, J.C.8
Rubin, E.M.9
Pennacchio, L.A.10
-
97
-
-
84865319844
-
Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers
-
Brunner AL, Beck AH, Edris B, et al. Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers. Genome Biol. 2012; 13: R75. doi: 10.1186/gb-2012-13-8-r75
-
(2012)
Genome Biol
, vol.13
, pp. R75
-
-
Brunner, A.L.1
Beck, A.H.2
Edris, B.3
-
98
-
-
34250010480
-
A common variant on chromosome 9p21 affects the risk of myocardial infarction
-
Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007; 316: 1491-1493. doi: 10.1126/science.1142842
-
(2007)
Science
, vol.316
, pp. 1491-1493
-
-
Helgadottir, A.1
Thorleifsson, G.2
Manolescu, A.3
-
99
-
-
40549109924
-
Procardis consortium susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked snps in the anril locus on chromosome 9p
-
Broadbent HM, Peden JF, Lorkowski S, et al; PROCARDIS consortium. Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 2008; 17: 806-814. doi: 10.1093/hmg/ddm352
-
(2008)
Hum Mol Genet
, vol.17
, pp. 806-814
-
-
Broadbent, H.M.1
Peden, J.F.2
Lorkowski, S.3
-
100
-
-
70449555143
-
Procardis consortia relationship between cad risk genotype in the chromosome 9p21 locus and gene expression identification of eight new anril splice variants
-
Folkersen L, Kyriakou T, Goel A, Peden J, Mälarstig A, Paulsson-Berne G, Hamsten A, Hugh Watkins, Franco-Cereceda A, Gabrielsen A, Eriksson P; PROCARDIS consortia. Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One. 2009; 4: e7677. doi: 10.1371/journal. pone.0007677
-
(2009)
Plos One
, vol.4
, pp. e7677
-
-
Folkersen, L.1
Kyriakou, T.2
Goel, A.3
Peden, J.4
Mälarstig, A.5
Paulsson-Berne, G.6
Hamsten, A.7
Hugh, W.8
Franco-Cereceda, A.9
Gabrielsen, A.10
Eriksson, P.11
-
101
-
-
77649166974
-
ANRIL expression is associated with atherosclerosis risk at chromosome 9p21
-
Holdt LM, Beutner F, Scholz M, Gielen S, Gäbel G, Bergert H, Schuler G, Thiery J, Teupser D. ANRIL expression is associated with atherosclerosis risk at chromosome 9p21. Arterioscler Thromb Vasc Biol. 2010; 30: 620-627. doi: 10.1161/ATVBAHA.109.196832
-
(2010)
Arterioscler Thromb Vasc Biol
, vol.30
, pp. 620-627
-
-
Holdt, L.M.1
Beutner, F.2
Scholz, M.3
Gielen, S.4
Gäbel, G.5
Bergert, H.6
Schuler, G.7
Thiery, J.8
Teupser, D.9
-
102
-
-
77953096072
-
Molecular interplay of the noncoding RNA anril and methylated histone h3 lysine 27 by polycomb cbx7 in transcriptional silencing of ink4a
-
Yap KL, Li S, Muñoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010; 38: 662-674. doi: 10.1016/j.molcel.2010.03.021
-
(2010)
Mol Cell
, vol.38
, pp. 662-674
-
-
Yap, K.L.1
Li, S.2
Muñoz-Cabello, A.M.3
Raguz, S.4
Zeng, L.5
Mujtaba, S.6
Gil, J.7
Walsh, M.J.8
Zhou, M.M.9
-
103
-
-
79951473520
-
9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response
-
Harismendy O, Notani D, Song X, Rahim NG, Tanasa B, Heintzman N, Ren B, Fu XD, Topol EJ, Rosenfeld MG, Frazer KA. 9p21 DNA variants associated with coronary artery disease impair interferon-γ signalling response. Nature. 2011; 470: 264-268. doi: 10.1038/nature09753
-
(2011)
Nature
, vol.470
, pp. 264-268
-
-
Harismendy, O.1
Notani, D.2
Song, X.3
Rahim, N.G.4
Tanasa, B.5
Heintzman, N.6
Ren, B.7
Fu, X.D.8
Topol, E.J.9
Rosenfeld, M.G.10
Frazer, K.A.11
-
104
-
-
33751277900
-
Identification of a novel non-coding RNA, miat, that confers risk of myocardial infarction
-
Ishii N, Ozaki K, Sato H, Mizuno H, Saito S, Takahashi A, Miyamoto Y, Ikegawa S, Kamatani N, Hori M, Saito S, Nakamura Y, Tanaka T. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006; 51: 1087-1099. doi: 10.1007/s10038-006-0070-9
-
(2006)
J Hum Genet
, vol.51
, pp. 1087-1099
-
-
Ishii, N.1
Ozaki, K.2
Sato, H.3
Mizuno, H.4
Saito, S.5
Takahashi, A.6
Miyamoto, Y.7
Ikegawa, S.8
Kamatani, N.9
Hori, M.10
Saito, S.11
Nakamura, Y.12
Tanaka, T.13
-
105
-
-
34548291568
-
The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons
-
Sone M, Hayashi T, Tarui H, Agata K, Takeichi M, Nakagawa S. The mRNA-like noncoding RNA Gomafu constitutes a novel nuclear domain in a subset of neurons. J Cell Sci. 2007; 120: 2498-2506. doi: 10.1242/jcs.009357
-
(2007)
J Cell Sci
, vol.120
, pp. 2498-2506
-
-
Sone, M.1
Hayashi, T.2
Tarui, H.3
Agata, K.4
Takeichi, M.5
Nakagawa, S.6
-
106
-
-
77951945884
-
The long noncoding RNA RNCR2 directs mouse retinal cell specification
-
Rapicavoli NA, Poth EM, Blackshaw S. The long noncoding RNA RNCR2 directs mouse retinal cell specification. BMC Dev Biol. 2010; 10: 49. doi: 10.1186/1471-213X-10-49
-
(2010)
BMC Dev Biol
, vol.10
, pp. 49
-
-
Rapicavoli, N.A.1
Poth, E.M.2
Blackshaw, S.3
-
107
-
-
75149163987
-
Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells
-
Sheik Mohamed J, Gaughwin PM, Lim B, Robson P, Lipovich L. Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. RNA. 2010; 16: 324-337. doi: 10.1261/rna.1441510
-
(2010)
RNA
, vol.16
, pp. 324-337
-
-
Sheik Mohamed, J.1
Gaughwin, P.M.2
Lim, B.3
Robson, P.4
Lipovich, L.5
-
108
-
-
84930709932
-
LncRNA-MIAT Regulates Microvascular Dysfunction by Functioning as a Competing Endogenous RNA
-
CIRCRESAHA.116.305510 [pii]
-
Yan B, Liu J, Yao J, Li X, Wang X, Li Y, Tao Z, Song Y, Chen Q, Jiang Q. LncRNA-MIAT Regulates Microvascular Dysfunction by Functioning as a Competing Endogenous RNA. Circ Res. 2015. doi: CIRCRESAHA.116.305510 [pii] 10.1161/CIRCRESAHA.116.305510
-
(2015)
Circ Res
-
-
Yan, B.1
Liu, J.2
Yao, J.3
Li, X.4
Wang, X.5
Li, Y.6
Tao, Z.7
Song, Y.8
Chen, Q.9
Jiang, Q.10
-
109
-
-
80053576647
-
Steroid Receptor RNA Activator -A nuclear receptor coregulator with multiple partners: Insights and challenges
-
Colley SM, Leedman PJ. Steroid Receptor RNA Activator -A nuclear receptor coregulator with multiple partners: insights and challenges. Biochimie. 2011; 93: 1966-1972. doi: 10.1016/j.biochi.2011.07.004
-
(2011)
Biochimie
, vol.93
, pp. 1966-1972
-
-
Colley, S.M.1
Leedman, P.J.2
-
110
-
-
80053572392
-
Steroid Receptor RNA Activator bi-faceted genetic system: Heads or Tails?
-
Cooper C, Vincett D, Yan Y, Hamedani MK, Myal Y, Leygue E. Steroid Receptor RNA Activator bi-faceted genetic system: Heads or Tails?. Biochimie. 2011; 93: 1973-1980. doi: 10.1016/j.biochi.2011.07.002
-
(2011)
Biochimie
, vol.93
, pp. 1973-1980
-
-
Cooper, C.1
Vincett, D.2
Yan, Y.3
Hamedani, M.K.4
Myal, Y.5
Leygue, E.6
-
111
-
-
61849151975
-
Hbegf sra1 and ik: Three cosegregating genes as determinants of cardiomyopathy
-
Friedrichs F, Zugck C, Rauch GJ, et al. HBEGF, SRA1, and IK: Three cosegregating genes as determinants of cardiomyopathy. Genome Res. 2009; 19: 395-403. doi: 10.1101/gr.076653.108
-
(2009)
Genome Res
, vol.19
, pp. 395-403
-
-
Friedrichs, F.1
Zugck, C.2
Rauch, G.J.3
-
112
-
-
33749125424
-
The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation
-
Caretti G, Schiltz RL, Dilworth FJ, Di Padova M, Zhao P, Ogryzko V, Fuller-Pace FV, Hoffman EP, Tapscott SJ, Sartorelli V. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation. Dev Cell. 2006; 11: 547-560. doi: 10.1016/j.devcel.2006.08.003
-
(2006)
Dev Cell
, vol.11
, pp. 547-560
-
-
Caretti, G.1
Schiltz, R.L.2
Dilworth, F.J.3
Di Padova, M.4
Zhao, P.5
Ogryzko, V.6
Fuller-Pace, F.V.7
Hoffman, E.P.8
Tapscott, S.J.9
Sartorelli, V.10
-
113
-
-
84923638273
-
Long noncoding RNAs: An emerging link between gene regulation and nuclear organization
-
Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol. 2014; 24: 651-663. doi: 10.1016/j.tcb.2014.08.009
-
(2014)
Trends Cell Biol
, vol.24
, pp. 651-663
-
-
Quinodoz, S.1
Guttman, M.2
-
114
-
-
84875418596
-
Noncoding RNA and polycomb recruitment
-
Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA. 2013; 19: 429-442. doi: 10.1261/rna.037598.112
-
(2013)
RNA
, vol.19
, pp. 429-442
-
-
Brockdorff, N.1
-
115
-
-
84885971573
-
The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis
-
Grote P, Herrmann BG. The long non-coding RNA Fendrr links epigenetic control mechanisms to gene regulatory networks in mammalian embryogenesis. RNA Biol. 2013; 10: 1579-1585. doi: 10.4161/rna.26165
-
(2013)
RNA Biol
, vol.10
, pp. 1579-1585
-
-
Grote, P.1
Herrmann, B.G.2
-
117
-
-
84921353503
-
Considerations when investigating lncRNA function in vivo
-
Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, Duboule D, Ephrussi A, Ferguson-Smith AC, Gingeras TR, Haerty W, Higgs DR, Miska EA, Ponting CP. Considerations when investigating lncRNA function in vivo. Elife. 2014; 3: e03058. doi: 10.7554/eLife.03058
-
(2014)
Elife
, vol.3
, pp. e03058
-
-
Bassett, A.R.1
Akhtar, A.2
Barlow, D.P.3
Bird, A.P.4
Brockdorff, N.5
Duboule, D.6
Ephrussi, A.7
Ferguson-Smith, A.C.8
Gingeras, T.R.9
Haerty, W.10
Higgs, D.R.11
Miska, E.A.12
Ponting, C.P.13
-
118
-
-
77954222814
-
Chromatin regulation by Brg1 underlies heart muscle development and disease
-
Hang CT, Yang J, Han P, Cheng HL, Shang C, Ashley E, Zhou B, Chang CP. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010; 466: 62-67. doi: 10.1038/nature09130
-
(2010)
Nature
, vol.466
, pp. 62-67
-
-
Hang, C.T.1
Yang, J.2
Han, P.3
Cheng, H.L.4
Shang, C.5
Ashley, E.6
Zhou, B.7
Chang, C.P.8
-
119
-
-
84908020927
-
A long noncoding RNA protects the heart from pathological hypertrophy
-
Han P, Li W, Lin CH, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014.; 514: 102-106. doi: 10.1038/nature13596.http://www.ncbi.nlm.nih.gov/pubmed/25119045
-
(2014)
Nature
, vol.514
, pp. 102-106
-
-
Han, P.1
Li, W.2
Lin, C.H.3
-
120
-
-
84928175519
-
Brg1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA hif1a-as1 in vitro
-
Wang S, Zhang X, Yuan Y, Tan M, Zhang L, Xue X, Yan Y, Han L, Xu Z. BRG1 expression is increased in thoracic aortic aneurysms and regulates proliferation and apoptosis of vascular smooth muscle cells through the long non-coding RNA HIF1A-AS1 in vitro. Eur J Cardiothorac Surg. 2014. doi: ezu215 [pii] 10.1093/ejcts/ezu215
-
(2014)
Eur J Cardiothorac Surg
-
-
Wang, S.1
Zhang, X.2
Yuan, Y.3
Tan, M.4
Zhang, L.5
Xue, X.6
Yan, Y.7
Han, L.8
Xu, Z.9
-
121
-
-
84866927722
-
The kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of kcnq1, but does not regulate its imprinting in the developing heart
-
Korostowski L, Sedlak N, Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart. PLoS Genet. 2012; 8: e1002956. doi: 10.1371/journal.pgen.1002956
-
(2012)
PLoS Genet
, vol.8
, pp. e1002956
-
-
Korostowski, L.1
Sedlak, N.2
Engel, N.3
-
122
-
-
84904628972
-
Cellular mechanisms underlying the increased disease severity seen for patients with long qt syndrome caused by compound mutations in kcnq1
-
Harmer SC, Mohal JS, Royal AA, McKenna WJ, Lambiase PD, Tinker A. Cellular mechanisms underlying the increased disease severity seen for patients with long QT syndrome caused by compound mutations in KCNQ1. Biochem J. 2014; 462: 133-142. doi: 10.1042/BJ20140425
-
(2014)
Biochem J.
, vol.462
, pp. 133-142
-
-
Harmer, S.C.1
Mohal, J.S.2
Royal, A.A.3
McKenna, W.J.4
Lambiase, P.D.5
Tinker, A.6
-
123
-
-
84885374473
-
The imprinted H19 lncRNA antagonizes let-7 microRNAs
-
Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell. 2013; 52: 101-112. doi: 10.1016/j. molcel.2013.08.027
-
(2013)
Mol Cell
, vol.52
, pp. 101-112
-
-
Kallen, A.N.1
Zhou, X.B.2
Xu, J.3
-
124
-
-
84906241067
-
Long noncoding RNA associated-competing endogenous RNAs in gastric cancer
-
Xia T, Liao Q, Jiang X, Shao Y, Xiao B, Xi Y, Guo J. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep. 2014; 4: 6088. doi: 10.1038/srep06088
-
(2014)
Sci Rep
, vol.4
, pp. 6088
-
-
Xia, T.1
Liao, Q.2
Jiang, X.3
Shao, Y.4
Xiao, B.5
Xi, Y.6
Guo, J.7
-
125
-
-
84878554459
-
The expanding repertoire of circular RNAs
-
Valdmanis PN, Kay MA. The expanding repertoire of circular RNAs. Mol Ther. 2013; 21: 1112-1114. doi: 10.1038/mt.2013.101
-
(2013)
Mol Ther
, vol.21
, pp. 1112-1114
-
-
Valdmanis, P.N.1
Kay, M.A.2
-
126
-
-
84875372911
-
Natural RNA circles function as efficient microRNA sponges
-
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J. Natural RNA circles function as efficient microRNA sponges. Nature. 2013; 495: 384-388. doi: 10.1038/nature11993
-
(2013)
Nature
, vol.495
, pp. 384-388
-
-
Hansen, T.B.1
Jensen, T.I.2
Clausen, B.H.3
Bramsen, J.B.4
Finsen, B.5
Damgaard, C.K.6
Kjems, J.7
-
127
-
-
84863045982
-
Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types
-
Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One. 2012; 7: e30733. doi: 10.1371/journal. pone.0030733
-
(2012)
Plos One
, vol.7
, pp. e30733
-
-
Salzman, J.1
Gawad, C.2
Wang, P.L.3
Lacayo, N.4
Brown, P.O.5
-
128
-
-
84899912204
-
The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting MIR-489
-
Wang K, Liu F, Zhou LY, Long B, Yuan SM, Wang Y, Liu CY, Sun T, Zhang XJ, Li PF. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014; 114: 1377-1388. doi: 10.1161/CIRCRESAHA.114.302476
-
(2014)
Circ Res
, vol.114
, pp. 1377-1388
-
-
Wang, K.1
Liu, F.2
Zhou, L.Y.3
Long, B.4
Yuan, S.M.5
Wang, Y.6
Liu, C.Y.7
Sun, T.8
Zhang, X.J.9
Li, P.F.10
-
129
-
-
84908418805
-
Carl lncrna inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing MIR-539-dependent phb2 downregulation
-
Wang K, Long B, Zhou LY, Liu F, Zhou QY, Liu CY, Fan YY, Li PF. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014; 5: 3596. doi: 10.1038/ncomms4596
-
(2014)
Nat Commun
, vol.5
, pp. 3596
-
-
Wang, K.1
Long, B.2
Zhou, L.Y.3
Liu, F.4
Zhou, Q.Y.5
Liu, C.Y.6
Fan, Y.Y.7
Li, P.F.8
-
130
-
-
33646473694
-
Complex Loci in human and mouse genomes
-
Engström PG, Suzuki H, Ninomiya N, et al. Complex Loci in human and mouse genomes. PLoS Genet. 2006; 2: e47. doi: 10.1371/journal. pgen.0020047
-
(2006)
PLoS Genet
, vol.2
, pp. e47
-
-
Engström, P.G.1
Suzuki, H.2
Ninomiya, N.3
-
131
-
-
84922708088
-
A micropeptide encoded by a putative long noncoding RNA regulates muscle performance
-
Anderson DM, Anderson KM, Bassel-duby R, Olson EN, Mcanally JR, Kasaragod P, Shelton JM, Liou J, Bassel-duby R, Olson EN. A micropeptide encoded by a putative long noncoding RNA regulates muscle performance. Cell. 2015; 160: 1-12. doi: 10.1016/j. cell.2015.01.009
-
(2015)
Cell
, vol.160
, pp. 1-12
-
-
Anderson, D.M.1
Anderson, K.M.2
Bassel-Duby, R.3
Olson, E.N.4
McAnally, J.R.5
Kasaragod, P.6
Shelton, J.M.7
Liou, J.8
Bassel-Duby, R.9
Olson, E.N.10
-
132
-
-
84455206362
-
Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution
-
Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell. 2011; 147: 1537-1550. doi: 10.1016/j. cell.2011.11.055
-
(2011)
Cell
, vol.147
, pp. 1537-1550
-
-
Ulitsky, I.1
Shkumatava, A.2
Jan, C.H.3
Sive, H.4
Bartel, D.P.5
-
133
-
-
84929705123
-
Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species
-
Hezroni H, Koppstein D, Schwartz MG, Avrutin A, Bartel DP, Ulitsky I. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep. 2015; 11: 1110-1122. doi: 10.1016/j.celrep.2015.04.023
-
(2015)
Cell Rep
, vol.11
, pp. 1110-1122
-
-
Hezroni, H.1
Koppstein, D.2
Schwartz, M.G.3
Avrutin, A.4
Bartel, D.P.5
Ulitsky, I.6
-
134
-
-
84897030160
-
The four dimensions of noncoding RNA conservation
-
Diederichs S. The four dimensions of noncoding RNA conservation. Trends Genet. 2014; 30: 121-123. doi: 10.1016/j.tig.2014.01.004
-
(2014)
Trends Genet
, vol.30
, pp. 121-123
-
-
Diederichs, S.1
-
135
-
-
62249133709
-
Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals
-
Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009; 458: 223-227. doi: 10.1038/nature07672
-
(2009)
Nature
, vol.458
, pp. 223-227
-
-
Guttman, M.1
Amit, I.2
Garber, M.3
-
136
-
-
84928029167
-
-
Nitsche A, Rose D, Fasold M, Reiche K, Stadler PF. Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved. 2015: 1-12. doi: 10.1261/rna.046342.114.studies
-
(2015)
Comparison of Splice Sites Reveals That Long Noncoding RNAs Are Evolutionarily Well Conserved
, pp. 1-12
-
-
Nitsche, A.1
Rose, D.2
Fasold, M.3
Reiche, K.4
Stadler, P.F.5
-
138
-
-
84895908120
-
The evolution of lncRNA repertoires and expression patterns in tetrapods
-
Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T, Zeller U, Baker JC, Grützner F, Kaessmann H. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature. 2014; 505: 635-640. doi: 10.1038/nature12943
-
(2014)
Nature
, vol.505
, pp. 635-640
-
-
Necsulea, A.1
Soumillon, M.2
Warnefors, M.3
Liechti, A.4
Daish, T.5
Zeller, U.6
Baker, J.C.7
Grützner, F.8
Kaessmann, H.9
-
140
-
-
84900857368
-
Lipcar: A mitochondrial lnc in the noncoding RNA chain?
-
CIRCRESAHA.114.304028 [pii
-
Dorn GW II. LIPCAR: a mitochondrial lnc in the noncoding RNA chain?. Circ Res. 2014; 114: 1548-1550. doi: CIRCRESAHA.114.304028 [pii] 10.1161/CIRCRESAHA.114.304028
-
(2014)
Circ Res
, vol.114
, pp. 1548-1550
-
-
Dorn, G.W.I.I.1
-
141
-
-
84877707375
-
One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering
-
Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 2013; 153: 910-918. doi: 10.1016/j.cell.2013.04.025
-
(2013)
Cell
, vol.153
, pp. 910-918
-
-
Wang, H.1
Yang, H.2
Shivalila, C.S.3
Dawlaty, M.M.4
Cheng, A.W.5
Zhang, F.6
Jaenisch, R.7
-
142
-
-
84908352138
-
Genome-scale crisprmediated control of gene repression and activation
-
Gilbert L a, Horlbeck M a, Adamson B, Villalta JE, Chen Y, Whitehead EH, Guimaraes C, Panning B, Ploegh HL. Genome-scale CRISPRmediated control of gene repression and activation. Cell. 2014; 159: 647-661. doi: 10.1016/j.cell.2014.09.029
-
(2014)
Cell
, vol.159
, pp. 647-661
-
-
Gilbert, L.A.1
Horlbeck, M.A.2
Adamson, B.3
Villalta, J.E.4
Chen, Y.5
Whitehead, E.H.6
Guimaraes, C.7
Panning, B.8
Ploegh, H.L.9
-
143
-
-
79960611669
-
Exploring RNA structural codes with SHAPE chemistry
-
Weeks KM, Mauger DM. Exploring RNA structural codes with SHAPE chemistry. Acc Chem Res. 2011; 44: 1280-1291. http://www.ncbi.nlm. nih.gov/pubmed/21615079
-
(2011)
Acc Chem Res
, vol.44
, pp. 1280-1291
-
-
Weeks, K.M.1
Mauger, D.M.2
-
144
-
-
84885127971
-
3S: Shotgun secondary structure determination of long non-coding RNAs
-
Novikova IV, Dharap A, Hennelly SP, Sanbonmatsu KY. 3S: shotgun secondary structure determination of long non-coding RNAs. Methods. 2013; 63: 170-177. http://www.ncbi.nlm.nih.gov/pubmed/23927838
-
(2013)
Methods
, vol.63
, pp. 170-177
-
-
Novikova, I.V.1
Dharap, A.2
Hennelly, S.P.3
Sanbonmatsu, K.Y.4
-
145
-
-
84862195751
-
Structural architecture of the human long non-coding RNA, steroid receptor RNA activator
-
Novikova I V, Hennelly SP, Sanbonmatsu KY. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 2012; 40: 5034-5051. http://www.ncbi.nlm.nih.gov/pubmed/22362738
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 5034-5051
-
-
Novikova, I.V.1
Hennelly, S.P.2
Sanbonmatsu, K.Y.3
-
146
-
-
84925283052
-
Technologies to probe functions and mechanisms of long noncoding RNAs
-
Chu C, Spitale RC, Chang HY. Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Publ Gr. 2015; 22: 29-35. doi: 10.1038/nsmb.2921
-
(2015)
Nat Publ Gr
, vol.22
, pp. 29-35
-
-
Chu, C.1
Spitale, R.C.2
Chang, H.Y.3
-
147
-
-
84937694780
-
Noncoding RNA in age-related cardiovascular diseases
-
Greco S, Gorospe M, Martelli F. Noncoding RNA in age-related cardiovascular diseases. J Mol Cell Cardiol. 2015; 83: 142-155. doi: 10.1016/j. yjmcc.2015.01.011
-
(2015)
J Mol Cell Cardiol
, vol.83
, pp. 142-155
-
-
Greco, S.1
Gorospe, M.2
Martelli, F.3
-
148
-
-
84874700585
-
MicroRNA-34a regulates cardiac ageing and function
-
Boon RA, Iekushi K, Lechner S, et al. MicroRNA-34a regulates cardiac ageing and function. Nature. 2013; 495: 107-110. doi: 10.1038/nature11919
-
(2013)
Nature
, vol.495
, pp. 107-110
-
-
Boon, R.A.1
Iekushi, K.2
Lechner, S.3
|