메뉴 건너뛰기




Volumn 35, Issue 12, 2015, Pages 2131-2143

Mcm2-7 is an active player in the DNA replication checkpoint signaling cascade via proposed modulation of its DNA gate

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATASE; CHECKPOINT KINASE 2; HELICASE; PROTEIN MCM2 7; UNCLASSIFIED DRUG; CDC45 PROTEIN, S CEREVISIAE; CELL CYCLE PROTEIN; DNA BINDING PROTEIN; FUNGAL DNA; MCM2 PROTEIN, S CEREVISIAE; MINICHROMOSOME MAINTENANCE PROTEIN; NUCLEAR PROTEIN; RAD53 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84929397329     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.01357-14     Document Type: Article
Times cited : (13)

References (76)
  • 2
    • 0034707047 scopus 로고    scopus 로고
    • The DNA damage response: putting checkpoints in perspective
    • Zhou BB, Elledge SJ. 2000. The DNA damage response: putting checkpoints in perspective. Nature 408:433-439. http://dx.doi.org/10.1038/35044005.
    • (2000) Nature , vol.408 , pp. 433-439
    • Zhou, B.B.1    Elledge, S.J.2
  • 4
    • 0038506000 scopus 로고    scopus 로고
    • Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53
    • Osborn AJ, Elledge SJ. 2003. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev 17:1755-1767. http://dx.doi.org/10.1101/gad.1098303.
    • (2003) Genes Dev , vol.17 , pp. 1755-1767
    • Osborn, A.J.1    Elledge, S.J.2
  • 5
    • 27544445683 scopus 로고    scopus 로고
    • The DNA damage response during DNA replication
    • Branzei D, Foiani M. 2005. The DNA damage response during DNA replication. Curr Opin Cell Biol 17:568-575. http://dx.doi.org/10.1016/j.ceb.2005.09.003.
    • (2005) Curr Opin Cell Biol , vol.17 , pp. 568-575
    • Branzei, D.1    Foiani, M.2
  • 6
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale C, Diffley JF. 1998. A Mec1-and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395:615-618. http://dx.doi.org/10.1038/27001.
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 7
    • 77957149919 scopus 로고    scopus 로고
    • Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation
    • Zegerman P, Diffley JF. 2010. Checkpoint-dependent inhibition of DNA replication initiation by Sld3 and Dbf4 phosphorylation. Nature 467:474-478. http://dx.doi.org/10.1038/nature09373.
    • (2010) Nature , vol.467 , pp. 474-478
    • Zegerman, P.1    Diffley, J.F.2
  • 8
    • 67349097341 scopus 로고    scopus 로고
    • Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint
    • Alabert C, Bianco JN, Pasero P. 2009. Differential regulation of homologous recombination at DNA breaks and replication forks by the Mrc1 branch of the S-phase checkpoint. EMBO J 28:1131-1141. http://dx.doi.org/10.1038/emboj.2009.75.
    • (2009) EMBO J , vol.28 , pp. 1131-1141
    • Alabert, C.1    Bianco, J.N.2    Pasero, P.3
  • 9
    • 13944261496 scopus 로고    scopus 로고
    • Temporal separation of replication and recombination requires the intra-S checkpoint
    • Meister P, Taddei A, Vernis L, Poidevin M, Gasser SM, Baldacci G. 2005. Temporal separation of replication and recombination requires the intra-S checkpoint. J Cell Biol 168:537-544. http://dx.doi.org/10.1083/jcb.200410006.
    • (2005) J Cell Biol , vol.168 , pp. 537-544
    • Meister, P.1    Taddei, A.2    Vernis, L.3    Poidevin, M.4    Gasser, S.M.5    Baldacci, G.6
  • 10
    • 84877888161 scopus 로고    scopus 로고
    • Controlling DNA replication origins in response to DNA damage-inhibit globally, activate locally
    • Yekezare M, Gomez-Gonzalez B, Diffley JF. 2013. Controlling DNA replication origins in response to DNA damage-inhibit globally, activate locally. J Cell Sci 126:1297-1306. http://dx.doi.org/10.1242/jcs.096701.
    • (2013) J Cell Sci , vol.126 , pp. 1297-1306
    • Yekezare, M.1    Gomez-Gonzalez, B.2    Diffley, J.F.3
  • 11
    • 84862307800 scopus 로고    scopus 로고
    • Eukaryotic DNA damage checkpoint activation in response to double-strand breaks
    • Finn K, Lowndes NF, Grenon M. 2012. Eukaryotic DNA damage checkpoint activation in response to double-strand breaks. Cell Mol Life Sci 69:1447-1473. http://dx.doi.org/10.1007/s00018-011-0875-3.
    • (2012) Cell Mol Life Sci , vol.69 , pp. 1447-1473
    • Finn, K.1    Lowndes, N.F.2    Grenon, M.3
  • 12
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L, Elledge SJ. 2003. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542-1548. http://dx.doi.org/10.1126/science.1083430.
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 13
    • 84860356328 scopus 로고    scopus 로고
    • Role of replication protein A as sensor in activation of the S-phase checkpoint in Xenopus egg extracts
    • Recolin B, Van der Laan S, Maiorano D. 2012. Role of replication protein A as sensor in activation of the S-phase checkpoint in Xenopus egg extracts. Nucleic Acids Res 40:3431-3442. http://dx.doi.org/10.1093/nar/gkr1241.
    • (2012) Nucleic Acids Res , vol.40 , pp. 3431-3442
    • Recolin, B.1    Van der Laan, S.2    Maiorano, D.3
  • 14
    • 18244371925 scopus 로고    scopus 로고
    • Functional uncoupling ofMCMhelicase and DNA polymerase activities activates the ATR-dependent checkpoint
    • Byun TS, Pacek M, Yee M-C, Walter JC, Cimprich KA. 2005. Functional uncoupling ofMCMhelicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev 19:1040-1052. http://dx.doi.org/10.1101/gad.1301205.
    • (2005) Genes Dev , vol.19 , pp. 1040-1052
    • Byun, T.S.1    Pacek, M.2    Yee, M.-C.3    Walter, J.C.4    Cimprich, K.A.5
  • 15
    • 0038730929 scopus 로고    scopus 로고
    • A central role for DNA replication forks in checkpoint activation and response
    • Tercero JA, Longhese MP, Diffley JF. 2003. A central role for DNA replication forks in checkpoint activation and response. Mol Cell 11: 1323-1336. http://dx.doi.org/10.1016/S1097-2765(03)00169-2.
    • (2003) Mol Cell , vol.11 , pp. 1323-1336
    • Tercero, J.A.1    Longhese, M.P.2    Diffley, J.F.3
  • 16
    • 84897513735 scopus 로고    scopus 로고
    • Molecular mechanisms of DNA replication checkpoint activation
    • Recolin B, van der Laan S, Tsanov N, Maiorano D. 2014. Molecular mechanisms of DNA replication checkpoint activation. Genes (Basel) 5:147-175. http://dx.doi.org/10.3390/genes5010147.
    • (2014) Genes (Basel) , vol.5 , pp. 147-175
    • Recolin, B.1    van der Laan, S.2    Tsanov, N.3    Maiorano, D.4
  • 18
    • 84891301320 scopus 로고    scopus 로고
    • Causes and consequences of replication stress
    • Zeman MK, Cimprich KA. 2014. Causes and consequences of replication stress. Nat Cell Biol 16:2-9. http://dx.doi.org/10.1038/ncb2897.
    • (2014) Nat Cell Biol , vol.16 , pp. 2-9
    • Zeman, M.K.1    Cimprich, K.A.2
  • 19
    • 71749086347 scopus 로고    scopus 로고
    • Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates withDNAreplication forks
    • Bando M, Katou Y, Komata M, Tanaka H, Itoh T, Sutani T, Shirahige K. 2009. Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates withDNAreplication forks. J Biol Chem 284:34355-34365. http://dx.doi.org/10.1074/jbc.M109.065730.
    • (2009) J Biol Chem , vol.284 , pp. 34355-34365
    • Bando, M.1    Katou, Y.2    Komata, M.3    Tanaka, H.4    Itoh, T.5    Sutani, T.6    Shirahige, K.7
  • 21
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078-1083. http://dx.doi.org/10.1038/nature01900.
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1    Kanoh, Y.2    Bando, M.3    Noguchi, H.4    Tanaka, H.5    Ashikari, T.6    Sugimoto, K.7    Shirahige, K.8
  • 22
    • 33845320139 scopus 로고    scopus 로고
    • Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function
    • Chou DM, Elledge SJ. 2006. Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci U S A 103:18143-18147. http://dx.doi.org/10.1073/pnas.0609251103.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 18143-18147
    • Chou, D.M.1    Elledge, S.J.2
  • 23
    • 53149135030 scopus 로고    scopus 로고
    • Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint
    • Lou H, Komata M, Katou Y, Guan Z, Reis CC, Budd M, Shirahige K, Campbell JL. 2008. Mrc1 and DNA polymerase epsilon function together in linking DNA replication and the S phase checkpoint. Mol Cell 32:106-117. http://dx.doi.org/10.1016/j.molcel.2008.08.020.
    • (2008) Mol Cell , vol.32 , pp. 106-117
    • Lou, H.1    Komata, M.2    Katou, Y.3    Guan, Z.4    Reis, C.C.5    Budd, M.6    Shirahige, K.7    Campbell, J.L.8
  • 24
    • 84869392858 scopus 로고    scopus 로고
    • Local and global functions of Timeless and Tipin in replication fork protection
    • Leman AR, Noguchi E. 2012. Local and global functions of Timeless and Tipin in replication fork protection. Cell Cycle 11:3945-3955. http://dx.doi.org/10.4161/cc.21989.
    • (2012) Cell Cycle , vol.11 , pp. 3945-3955
    • Leman, A.R.1    Noguchi, E.2
  • 25
    • 70249118531 scopus 로고    scopus 로고
    • The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for the replication checkpoint against methyl methanesulfonate-induced stress
    • Komata M, Bando M, Araki H, Shirahige K. 2009. The direct binding of Mrc1, a checkpoint mediator, to Mcm6, a replication helicase, is essential for the replication checkpoint against methyl methanesulfonate-induced stress. Mol Cell Biol 29:5008-5019. http://dx.doi.org/10.1128/MCB.01934-08.
    • (2009) Mol Cell Biol , vol.29 , pp. 5008-5019
    • Komata, M.1    Bando, M.2    Araki, H.3    Shirahige, K.4
  • 26
    • 10644290908 scopus 로고    scopus 로고
    • Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling
    • Tsao CC, Geisen C, Abraham RT. 2004. Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling. EMBO J 23:4660-4669. http://dx.doi.org/10.1038/sj.emboj.7600463.
    • (2004) EMBO J , vol.23 , pp. 4660-4669
    • Tsao, C.C.1    Geisen, C.2    Abraham, R.T.3
  • 27
    • 71449107031 scopus 로고    scopus 로고
    • The Mcm complex: unwinding the mechanism of a replicative helicase
    • Bochman ML, Schwacha A. 2009. The Mcm complex: unwinding the mechanism of a replicative helicase. Microbiol Mol Biol Rev 73:652-683. http://dx.doi.org/10.1128/MMBR.00019-09.
    • (2009) Microbiol Mol Biol Rev , vol.73 , pp. 652-683
    • Bochman, M.L.1    Schwacha, A.2
  • 28
    • 84901605710 scopus 로고    scopus 로고
    • Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program
    • Renard-Guillet C, Kanoh Y, Shirahige K, Masai H. 2014. Temporal and spatial regulation of eukaryotic DNA replication: from regulated initiation to genome-scale timing program. Semin Cell Dev Biol 30:110-120. http://dx.doi.org/10.1016/j.semcdb.2014.04.014.
    • (2014) Semin Cell Dev Biol , vol.30 , pp. 110-120
    • Renard-Guillet, C.1    Kanoh, Y.2    Shirahige, K.3    Masai, H.4
  • 29
    • 84905255551 scopus 로고    scopus 로고
    • A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA
    • Samel SA, Fernandez-Cid A, Sun J, Riera A, Tognetti S, Herrera MC, Li H, Speck C. 2014. A unique DNA entry gate serves for regulated loading of the eukaryotic replicative helicase MCM2-7 onto DNA. Genes Dev 28:1653-1666. http://dx.doi.org/10.1101/gad.242404.114.
    • (2014) Genes Dev , vol.28 , pp. 1653-1666
    • Samel, S.A.1    Fernandez-Cid, A.2    Sun, J.3    Riera, A.4    Tognetti, S.5    Herrera, M.C.6    Li, H.7    Speck, C.8
  • 30
    • 47349114465 scopus 로고    scopus 로고
    • The Mcm2-7 complex has in vitro helicase activity
    • Bochman ML, Schwacha A. 2008. The Mcm2-7 complex has in vitro helicase activity. Mol Cell 31:287-293. http://dx.doi.org/10.1016/j.molcel.2008.05.020.
    • (2008) Mol Cell , vol.31 , pp. 287-293
    • Bochman, M.L.1    Schwacha, A.2
  • 32
    • 78049431126 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'
    • Bochman ML, Schwacha A. 2010. The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate.' Nucleic Acids Res 38:6078-6088. http://dx.doi.org/10.1093/nar/gkq422.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6078-6088
    • Bochman, M.L.1    Schwacha, A.2
  • 33
    • 52649096993 scopus 로고    scopus 로고
    • Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability
    • Bochman ML, Bell SP, Schwacha A. 2008. Subunit organization of Mcm2-7 and the unequal role of active sites in ATP hydrolysis and viability. Mol Cell Biol 28:5865-5873. http://dx.doi.org/10.1128/MCB.00161-08.
    • (2008) Mol Cell Biol , vol.28 , pp. 5865-5873
    • Bochman, M.L.1    Bell, S.P.2    Schwacha, A.3
  • 34
    • 0030886099 scopus 로고    scopus 로고
    • Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase
    • Aparicio OM, Weinstein DM, Bell SP. 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91:59-69. http://dx.doi.org/10.1016/S0092-8674(01)80009-X.
    • (1997) Cell , vol.91 , pp. 59-69
    • Aparicio, O.M.1    Weinstein, D.M.2    Bell, S.P.3
  • 35
    • 0021369651 scopus 로고
    • Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces
    • Kilmartin JV, Adams AE. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J Cell Biol 98:922-933. http://dx.doi.org/10.1083/jcb.98.3.922.
    • (1984) J Cell Biol , vol.98 , pp. 922-933
    • Kilmartin, J.V.1    Adams, A.E.2
  • 36
    • 24944583185 scopus 로고    scopus 로고
    • Exploration of the topological requirements ofERADidentifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen
    • Bhamidipati A, Denic V, Quan EM, Weissman JS. 2005. Exploration of the topological requirements ofERADidentifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. Mol Cell 19:741-751. http://dx.doi.org/10.1016/j.molcel.2005.07.027.
    • (2005) Mol Cell , vol.19 , pp. 741-751
    • Bhamidipati, A.1    Denic, V.2    Quan, E.M.3    Weissman, J.S.4
  • 37
    • 84860527731 scopus 로고    scopus 로고
    • Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation
    • van Deursen F, Sengupta S, De Piccoli G, Sanchez-Diaz A, Labib K. 2012. Mcm10 associates with the loaded DNA helicase at replication origins and defines a novel step in its activation. EMBO J 31:2195-2206. http://dx.doi.org/10.1038/emboj.2012.69.
    • (2012) EMBO J , vol.31 , pp. 2195-2206
    • van Deursen, F.1    Sengupta, S.2    De Piccoli, G.3    Sanchez-Diaz, A.4    Labib, K.5
  • 38
    • 34250305558 scopus 로고    scopus 로고
    • Modular organization of the Sulfolobus solfataricus mini-chromosome maintenance protein
    • Pucci B, De Felice M, Rocco M, Esposito F, De Falco M, Esposito L, Rossi M, Pisani FM. 2007. Modular organization of the Sulfolobus solfataricus mini-chromosome maintenance protein. J Biol Chem 282: 12574-12582. http://dx.doi.org/10.1074/jbc.M610953200.
    • (2007) J Biol Chem , vol.282 , pp. 12574-12582
    • Pucci, B.1    De Felice, M.2    Rocco, M.3    Esposito, F.4    De Falco, M.5    Esposito, L.6    Rossi, M.7    Pisani, F.M.8
  • 39
    • 0030474371 scopus 로고    scopus 로고
    • GFP tagging of budding yeast chromosomes reveals that protein protein interactions can mediate sister chromatid cohesion
    • Straight AF, Belmont AS, Robinett CC, Murray AW. 1996. GFP tagging of budding yeast chromosomes reveals that protein protein interactions can mediate sister chromatid cohesion. Curr Biol 6:1599-1608. http://dx.doi.org/10.1016/S0960-9822(02)70783-5.
    • (1996) Curr Biol , vol.6 , pp. 1599-1608
    • Straight, A.F.1    Belmont, A.S.2    Robinett, C.C.3    Murray, A.W.4
  • 40
    • 0141940250 scopus 로고    scopus 로고
    • Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae
    • Vernis L, Piskur J, Diffley JFX. 2003. Reconstitution of an efficient thymidine salvage pathway in Saccharomyces cerevisiae. Nucleic Acids Res 31:e120. http://dx.doi.org/10.1093/nar/gng121.
    • (2003) Nucleic Acids Res , vol.31
    • Vernis, L.1    Piskur, J.2    Diffley, J.F.X.3
  • 42
    • 79951970806 scopus 로고    scopus 로고
    • Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression
    • Kawabata T, Luebben SW, Yamaguchi S, Ilves I, Matise I, Buske T, Botchan MR, Shima N. 2011. Stalled fork rescue via dormant replication origins in unchallenged S phase promotes proper chromosome segregation and tumor suppression. Mol Cell 41:543-553. http://dx.doi.org/10.1016/j.molcel.2011.02.006.
    • (2011) Mol Cell , vol.41 , pp. 543-553
    • Kawabata, T.1    Luebben, S.W.2    Yamaguchi, S.3    Ilves, I.4    Matise, I.5    Buske, T.6    Botchan, M.R.7    Shima, N.8
  • 43
    • 68049140918 scopus 로고    scopus 로고
    • Aneuploidy and improved growth are coincident but not causal in a yeast cancer model
    • Li XC, Schimenti JC, Tye BK. 2009. Aneuploidy and improved growth are coincident but not causal in a yeast cancer model. PLoS Biol 7:e1000161. http://dx.doi.org/10.1371/journal.pbio.1000161.
    • (2009) PLoS Biol , vol.7
    • Li, X.C.1    Schimenti, J.C.2    Tye, B.K.3
  • 44
    • 68249122027 scopus 로고    scopus 로고
    • The checkpoint response to replication stress
    • Branzei D, Foiani M. 2009. The checkpoint response to replication stress. DNA Repair (Amst) 8:1038-1046. http://dx.doi.org/10.1016/j.dnarep.2009.04.014.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1038-1046
    • Branzei, D.1    Foiani, M.2
  • 45
    • 0033570894 scopus 로고    scopus 로고
    • Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase
    • Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M. 1999. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J 18:6561-6572. http://dx.doi.org/10.1093/emboj/18.22.6561.
    • (1999) EMBO J , vol.18 , pp. 6561-6572
    • Pellicioli, A.1    Lucca, C.2    Liberi, G.3    Marini, F.4    Lopes, M.5    Plevani, P.6    Romano, A.7    Di Fiore, P.P.8    Foiani, M.9
  • 46
    • 0036281710 scopus 로고    scopus 로고
    • Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint
    • Schwartz MF, Duong JK, Sun Z, Morrow JS, Pradhan D, Stern DF. 2002. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol Cell 9:1055-1065. http://dx.doi.org/10.1016/S1097-2765(02)00532-4.
    • (2002) Mol Cell , vol.9 , pp. 1055-1065
    • Schwartz, M.F.1    Duong, J.K.2    Sun, Z.3    Morrow, J.S.4    Pradhan, D.5    Stern, D.F.6
  • 47
    • 0642283646 scopus 로고    scopus 로고
    • Sensing and signaling DNA damage: roles of Rad17 and Rad9 complexes in the cellular response to DNA damage
    • Zou L, Elledge SJ. 2001. Sensing and signaling DNA damage: roles of Rad17 and Rad9 complexes in the cellular response to DNA damage. Harvey Lect 97:1-15.
    • (2001) Harvey Lect , vol.97 , pp. 1-15
    • Zou, L.1    Elledge, S.J.2
  • 48
    • 0035797444 scopus 로고    scopus 로고
    • Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
    • Tercero JA, Diffley JFX. 2001. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412:553-557. http://dx.doi.org/10.1038/35087607.
    • (2001) Nature , vol.412 , pp. 553-557
    • Tercero, J.A.1    Diffley, J.F.X.2
  • 49
    • 0028353634 scopus 로고
    • Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair
    • Weinert TA, Kiser GL, Hartwell LH. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8:652-665. http://dx.doi.org/10.1101/gad.8.6.652.
    • (1994) Genes Dev , vol.8 , pp. 652-665
    • Weinert, T.A.1    Kiser, G.L.2    Hartwell, L.H.3
  • 50
    • 0032161269 scopus 로고    scopus 로고
    • A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
    • Zhao X, Muller EG, Rothstein R. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol Cell 2:329-340. http://dx.doi.org/10.1016/S1097-2765(00)80277-4.
    • (1998) Mol Cell , vol.2 , pp. 329-340
    • Zhao, X.1    Muller, E.G.2    Rothstein, R.3
  • 51
    • 0035796505 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage
    • Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R. 2001. The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 20:3544-3553. http://dx.doi.org/10.1093/emboj/20.13.3544.
    • (2001) EMBO J , vol.20 , pp. 3544-3553
    • Zhao, X.1    Chabes, A.2    Domkin, V.3    Thelander, L.4    Rothstein, R.5
  • 52
    • 0036948433 scopus 로고    scopus 로고
    • Toward maintaining the genome: DNA damage and replication checkpoints
    • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. 2002. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36:617-656. http://dx.doi.org/10.1146/annurev.genet.36.060402.113540.
    • (2002) Annu Rev Genet , vol.36 , pp. 617-656
    • Nyberg, K.A.1    Michelson, R.J.2    Putnam, C.W.3    Weinert, T.A.4
  • 53
    • 78549290265 scopus 로고    scopus 로고
    • Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response
    • Crabbe L, Thomas A, Pantesco V, De Vos J, Pasero P, Lengronne A. 2010. Analysis of replication profiles reveals key role of RFC-Ctf18 in yeast replication stress response. Nat Struct Mol Biol 17:1391-1397. http://dx.doi.org/10.1038/nsmb.1932.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1391-1397
    • Crabbe, L.1    Thomas, A.2    Pantesco, V.3    De Vos, J.4    Pasero, P.5    Lengronne, A.6
  • 54
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell SP, Dutta A. 2002. DNA replication in eukaryotic cells. Annu Rev Biochem 71:333-374. http://dx.doi.org/10.1146/annurev.biochem.71.110601.135425.
    • (2002) Annu Rev Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 57
    • 0032189952 scopus 로고    scopus 로고
    • The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage
    • Vialard JE, Gilbert CS, Green CM, Lowndes NF. 1998. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 17:5679-5688. http://dx.doi.org/10.1093/emboj/17.19.5679.
    • (1998) EMBO J , vol.17 , pp. 5679-5688
    • Vialard, J.E.1    Gilbert, C.S.2    Green, C.M.3    Lowndes, N.F.4
  • 58
    • 0030593033 scopus 로고    scopus 로고
    • Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways
    • Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ. 1996. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357-360. http://dx.doi.org/10.1126/science.271.5247.357.
    • (1996) Science , vol.271 , pp. 357-360
    • Sanchez, Y.1    Desany, B.A.2    Jones, W.J.3    Liu, Q.4    Wang, B.5    Elledge, S.J.6
  • 59
    • 0242579867 scopus 로고    scopus 로고
    • Replication checkpoint protein Mrc1 is regulated by Rad3 and Tel1 in fission yeast
    • Zhao H, Tanaka K, Nogochi E, Nogochi C, Russell P. 2003. Replication checkpoint protein Mrc1 is regulated by Rad3 and Tel1 in fission yeast. Mol Cell Biol 23:8395-8403. http://dx.doi.org/10.1128/MCB.23.22.8395-8403.2003.
    • (2003) Mol Cell Biol , vol.23 , pp. 8395-8403
    • Zhao, H.1    Tanaka, K.2    Nogochi, E.3    Nogochi, C.4    Russell, P.5
  • 60
    • 78149462002 scopus 로고    scopus 로고
    • Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7
    • Randell JCW, Fan A, Chan C, Francis LI, Heller RC, Galani K, Bell SP. 2010. Mec1 is one of multiple kinases that prime the Mcm2-7 helicase for phosphorylation by Cdc7. Mol Cell 40:353-363. http://dx.doi.org/10.1016/j.molcel.2010.10.017.
    • (2010) Mol Cell , vol.40 , pp. 353-363
    • Randell, J.C.W.1    Fan, A.2    Chan, C.3    Francis, L.I.4    Heller, R.C.5    Galani, K.6    Bell, S.P.7
  • 61
    • 3042798440 scopus 로고    scopus 로고
    • Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases
    • Cortez D, Glick G, Elledge SJ. 2004. Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci U S A 101:10078-10083. http://dx.doi.org/10.1073/pnas.0403410101.
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 10078-10083
    • Cortez, D.1    Glick, G.2    Elledge, S.J.3
  • 62
    • 33645717628 scopus 로고    scopus 로고
    • GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
    • Gambus A, Jones RC, Sanchez-Diaz A, Kanemaki M, van Deursen F, Edmondson RD, Labib K. 2006. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8:358-366. http://dx.doi.org/10.1038/ncb1382.
    • (2006) Nat Cell Biol , vol.8 , pp. 358-366
    • Gambus, A.1    Jones, R.C.2    Sanchez-Diaz, A.3    Kanemaki, M.4    van Deursen, F.5    Edmondson, R.D.6    Labib, K.7
  • 63
    • 73349127026 scopus 로고    scopus 로고
    • Cohesin: its roles and mechanisms
    • Nasmyth K, Haering CH. 2009. Cohesin: its roles and mechanisms. Annu Rev Genet 43:525-558. http://dx.doi.org/10.1146/annurev-genet-102108-134233.
    • (2009) Annu Rev Genet , vol.43 , pp. 525-558
    • Nasmyth, K.1    Haering, C.H.2
  • 65
    • 3543031002 scopus 로고    scopus 로고
    • Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage
    • Xu H, Boone C, Klein HL. 2004. Mrc1 is required for sister chromatid cohesion to aid in recombination repair of spontaneous damage. Mol Cell Biol 24:7082-7090. http://dx.doi.org/10.1128/MCB.24.16.7082-7090.2004.
    • (2004) Mol Cell Biol , vol.24 , pp. 7082-7090
    • Xu, H.1    Boone, C.2    Klein, H.L.3
  • 66
    • 0033083727 scopus 로고    scopus 로고
    • Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication
    • Tóth A, Ciosk R, Uhlmann F, Galova M, Schleiffer A, Nasmyth K. 1999. Yeast cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication. Genes Dev 13:320-333. http://dx.doi.org/10.1101/gad.13.3.320.
    • (1999) Genes Dev , vol.13 , pp. 320-333
    • Tóth, A.1    Ciosk, R.2    Uhlmann, F.3    Galova, M.4    Schleiffer, A.5    Nasmyth, K.6
  • 67
    • 70349901079 scopus 로고    scopus 로고
    • Stability effects of mutations and protein evolvability
    • Tokuriki N, Tawfik DS. 2009. Stability effects of mutations and protein evolvability. Curr Opin Struct Biol 19:596-604. http://dx.doi.org/10.1016/j.sbi.2009.08.003.
    • (2009) Curr Opin Struct Biol , vol.19 , pp. 596-604
    • Tokuriki, N.1    Tawfik, D.S.2
  • 68
    • 80052498192 scopus 로고    scopus 로고
    • Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage
    • Stead BE, Brandl CJ, Davey MJ. 2011. Phosphorylation of Mcm2 modulates Mcm2-7 activity and affects the cell's response to DNA damage. Nucleic Acids Res 39:6998-7008. http://dx.doi.org/10.1093/nar/gkr371.
    • (2011) Nucleic Acids Res , vol.39 , pp. 6998-7008
    • Stead, B.E.1    Brandl, C.J.2    Davey, M.J.3
  • 69
    • 67650683478 scopus 로고    scopus 로고
    • ATP binding and hydrolysis by Mcm2 regulateDNAbinding byMcmcomplexes
    • Stead BE, Sorbara CD, Brandl CJ, Davey MJ. 2009. ATP binding and hydrolysis by Mcm2 regulateDNAbinding byMcmcomplexes. J Mol Biol 391:301-313. http://dx.doi.org/10.1016/j.jmb.2009.06.038.
    • (2009) J Mol Biol , vol.391 , pp. 301-313
    • Stead, B.E.1    Sorbara, C.D.2    Brandl, C.J.3    Davey, M.J.4
  • 70
    • 77649175453 scopus 로고    scopus 로고
    • Genomic instability-an evolving hallmark of cancer
    • Negrini S, Gorgoulis VG, Halazonetis TD. 2010. Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220-228. http://dx.doi.org/10.1038/nrm2858.
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 220-228
    • Negrini, S.1    Gorgoulis, V.G.2    Halazonetis, T.D.3
  • 71
    • 0030859463 scopus 로고    scopus 로고
    • A DNA helicase activity is associated with an MCM4,-6, and-7 protein complex
    • Ishimi Y. 1997. A DNA helicase activity is associated with an MCM4,-6, and-7 protein complex. J Biol Chem 272:24508-24513. http://dx.doi.org/10.1074/jbc.272.39.24508.
    • (1997) J Biol Chem , vol.272 , pp. 24508-24513
    • Ishimi, Y.1
  • 72
    • 0032478695 scopus 로고    scopus 로고
    • Biochemical function of mouse minichromosome maintenance 2 protein
    • Ishimi Y, Komamura Y, You Z, Kimura H. 1998. Biochemical function of mouse minichromosome maintenance 2 protein. J Biol Chem 273: 8369-8375. http://dx.doi.org/10.1074/jbc.273.14.8369.
    • (1998) J Biol Chem , vol.273 , pp. 8369-8375
    • Ishimi, Y.1    Komamura, Y.2    You, Z.3    Kimura, H.4
  • 73
    • 67650562147 scopus 로고    scopus 로고
    • Reconstitution of Rad53 activation by Mec1 through adaptor protein Mrc1
    • Chen S-H, Zhou H. 2009. Reconstitution of Rad53 activation by Mec1 through adaptor protein Mrc1. J Biol Chem 284:18593-18604. http://dx.doi.org/10.1074/jbc.M109.018242.
    • (2009) J Biol Chem , vol.284 , pp. 18593-18604
    • Chen, S.-H.1    Zhou, H.2
  • 74
    • 84858383984 scopus 로고    scopus 로고
    • Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo
    • Berens TJ, Toczyski DP. 2012. Colocalization of Mec1 and Mrc1 is sufficient for Rad53 phosphorylation in vivo. Mol Biol Cell 23:1058-1067. http://dx.doi.org/10.1091/mbc.E11-10-0852.
    • (2012) Mol Biol Cell , vol.23 , pp. 1058-1067
    • Berens, T.J.1    Toczyski, D.P.2
  • 75
    • 84887268157 scopus 로고    scopus 로고
    • Direct monitoring of the strand passage reaction of DNA topoisomerase II triggers checkpoint activation
    • Furniss KL, Tsai HJ, Byl JA, Lane AB, Vas AC, Hsu WS, Osheroff N, Clarke DJ. 2013. Direct monitoring of the strand passage reaction of DNA topoisomerase II triggers checkpoint activation. PLoS Genet 9:e1003832. http://dx.doi.org/10.1371/journal.pgen.1003832.
    • (2013) PLoS Genet , vol.9
    • Furniss, K.L.1    Tsai, H.J.2    Byl, J.A.3    Lane, A.B.4    Vas, A.C.5    Hsu, W.S.6    Osheroff, N.7    Clarke, D.J.8
  • 76
    • 84873732346 scopus 로고    scopus 로고
    • Human Tim-Tipin complex affects the biochemical properties of the replicative DNA helicase and DNA polymerases
    • Cho WH, Kang YH, An YY, Tappin I, Hurwitz J, Lee JK. 2013. Human Tim-Tipin complex affects the biochemical properties of the replicative DNA helicase and DNA polymerases. Proc Natl Acad Sci U S A 110:2523-2527. http://dx.doi.org/10.1073/pnas.1222494110.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 2523-2527
    • Cho, W.H.1    Kang, Y.H.2    An, Y.Y.3    Tappin, I.4    Hurwitz, J.5    Lee, J.K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.