메뉴 건너뛰기




Volumn 11, Issue 3, 2015, Pages

Replicative DNA Polymerase δ but Not ε Proofreads Errors in Cis and in Trans

Author keywords

[No Author keywords available]

Indexed keywords

DNA DIRECTED DNA POLYMERASE DELTA; DNA DIRECTED DNA POLYMERASE EPSILON; DNA DIRECTED DNA POLYMERASE ALPHA; DNA DIRECTED DNA POLYMERASE GAMMA; FUNGAL DNA;

EID: 84926183158     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1005049     Document Type: Article
Times cited : (45)

References (123)
  • 3
    • 0027417017 scopus 로고
    • Pathway correcting DNA replication errors in Saccharomyces cerevisiae
    • Morrison A, Johnson AL, Johnston LH, Sugino A, Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J. 1993;12: 1467–1473. 8385605
    • (1993) EMBO J , vol.12 , pp. 1467-1473
    • Morrison, A.1    Johnson, A.L.2    Johnston, L.H.3    Sugino, A.4
  • 4
    • 0026004621 scopus 로고
    • Eukaryotic DNA polymerase amino acid sequence required for 3′——5′ exonuclease activity
    • Morrison A, Bell JB, Kunkel TA, Sugino A, Eukaryotic DNA polymerase amino acid sequence required for 3′——5′ exonuclease activity. Proc Natl Acad Sci USA. 1991;88: 9473–9477. 1658784
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 9473-9477
    • Morrison, A.1    Bell, J.B.2    Kunkel, T.A.3    Sugino, A.4
  • 5
    • 0025900035 scopus 로고
    • The 3′ to 5′ exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication
    • Simon M, Giot L, Faye G, The 3′ to 5′ exonuclease activity located in the DNA polymerase delta subunit of Saccharomyces cerevisiae is required for accurate replication. EMBO J. 1991;10: 2165–2170. 1648480
    • (1991) EMBO J , vol.10 , pp. 2165-2170
    • Simon, M.1    Giot, L.2    Faye, G.3
  • 6
    • 75749086797 scopus 로고    scopus 로고
    • DNA polymerases at the eukaryotic fork-20 years later
    • Pavlov YI, Shcherbakova PV, DNA polymerases at the eukaryotic fork-20 years later. Mutat Res. 2010;685: 45–53. doi: 10.1016/j.mrfmmm.2009.08.002 19682465
    • (2010) Mutat Res , vol.685 , pp. 45-53
    • Pavlov, Y.I.1    Shcherbakova, P.V.2
  • 7
    • 0028174896 scopus 로고
    • The 3′—>5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae
    • Morrison A, Sugino A, The 3′—>5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet. 1994;242: 289–296. 8107676
    • (1994) Mol Gen Genet , vol.242 , pp. 289-296
    • Morrison, A.1    Sugino, A.2
  • 8
    • 0034595502 scopus 로고    scopus 로고
    • Evidence from mutational specificity studies that yeast DNA polymerases δ and ε replicate different DNA strands at an intracellular replication fork
    • Karthikeyan R, Vonarx EJ, Straffon AFL, Simon M, Faye G, et al. Evidence from mutational specificity studies that yeast DNA polymerases δ and ε replicate different DNA strands at an intracellular replication fork. J Mol Biol. 2000;299: 405–419. 10860748
    • (2000) J Mol Biol , vol.299 , pp. 405-419
    • Karthikeyan, R.1    Vonarx, E.J.2    Straffon, A.F.L.3    Simon, M.4    Faye, G.5
  • 9
    • 0029670573 scopus 로고    scopus 로고
    • 3′—>5′ exonucleases of DNA polymerases ε and δ correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae
    • Shcherbakova PV, Pavlov YI, 3′—>5′ exonucleases of DNA polymerases ε and δ correct base analog induced DNA replication errors on opposite DNA strands in Saccharomyces cerevisiae. Genetics. 1996;142: 717–726. 8849882
    • (1996) Genetics , vol.142 , pp. 717-726
    • Shcherbakova, P.V.1    Pavlov, Y.I.2
  • 10
    • 30944452765 scopus 로고    scopus 로고
    • Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ
    • Pavlov YI, Frahm C, Nick McElhinny SA, Niimi A, Suzuki M, et al. Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ. Curr Biol. 2006;16: 202–207. 16431373
    • (2006) Curr Biol , vol.16 , pp. 202-207
    • Pavlov, Y.I.1    Frahm, C.2    Nick McElhinny, S.A.3    Niimi, A.4    Suzuki, M.5
  • 11
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase ε participates in leading-strand DNA replication
    • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA, Yeast DNA polymerase ε participates in leading-strand DNA replication. Science. 2007;317: 127–130. 17615360
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 14
    • 84855267435 scopus 로고    scopus 로고
    • The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved
    • Miyabe I, Kunkel TA, Carr AM, The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved. PLoS Genet. 2011;7: e1002407. doi: 10.1371/journal.pgen.1002407 22144917
    • (2011) PLoS Genet , vol.7 , pp. 1002407
    • Miyabe, I.1    Kunkel, T.A.2    Carr, A.M.3
  • 15
    • 0032587610 scopus 로고    scopus 로고
    • DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability
    • Kesti T, Flick K, Keränen S, Syväoja JE, Wittenberg C, DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol Cell. 1999;3: 679–685. 10360184
    • (1999) Mol Cell , vol.3 , pp. 679-685
    • Kesti, T.1    Flick, K.2    Keränen, S.3    Syväoja, J.E.4    Wittenberg, C.5
  • 16
    • 3242736410 scopus 로고    scopus 로고
    • Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations
    • Pavlov YI, Maki S, Maki H, Kunkel TA, Evidence for interplay among yeast replicative DNA polymerases alpha, delta and epsilon from studies of exonuclease and polymerase active site mutations. BMC Biol. 2004;2: 11. 15163346
    • (2004) BMC Biol , vol.2 , pp. 11
    • Pavlov, Y.I.1    Maki, S.2    Maki, H.3    Kunkel, T.A.4
  • 17
    • 0034809479 scopus 로고    scopus 로고
    • Spontaneous frameshift mutations in Saccharomyces cerevisiae: Accumulation during DNA replication and removal by proofreading and mismatch repair activities
    • Greene CN, Jinks-Robertson S, Spontaneous frameshift mutations in Saccharomyces cerevisiae: Accumulation during DNA replication and removal by proofreading and mismatch repair activities. Genetics. 2001;159: 65–75. 11560887
    • (2001) Genetics , vol.159 , pp. 65-75
    • Greene, C.N.1    Jinks-Robertson, S.2
  • 18
    • 0032588388 scopus 로고    scopus 로고
    • The 3′—>5′ exonucleases of DNA polymerases δ and ε and the 5′—>3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae
    • Tran HT, Gordenin DA, Resnick MA, The 3′—>5′ exonucleases of DNA polymerases δ and ε and the 5′—>3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol. 1999;19: 2000–2007. 10022887
    • (1999) Mol Cell Biol , vol.19 , pp. 2000-2007
    • Tran, H.T.1    Gordenin, D.A.2    Resnick, M.A.3
  • 19
    • 18044384092 scopus 로고    scopus 로고
    • DNA polymerases that propagate the eukaryotic DNA replication fork
    • Garg P, Burgers PMJ, DNA polymerases that propagate the eukaryotic DNA replication fork. Crit Rev Biochem Mol Biol. 2005;40: 115–128. 15814431
    • (2005) Crit Rev Biochem Mol Biol , vol.40 , pp. 115-128
    • Garg, P.1    Burgers, P.M.J.2
  • 20
    • 54249092768 scopus 로고    scopus 로고
    • Dividing the workload at a eukaryotic replication fork
    • Kunkel TA, Burgers PM, Dividing the workload at a eukaryotic replication fork. Trends Cell Biol. 2008;18: 521–527. doi: 10.1016/j.tcb.2008.08.005 18824354
    • (2008) Trends Cell Biol , vol.18 , pp. 521-527
    • Kunkel, T.A.1    Burgers, P.M.2
  • 21
  • 22
    • 33646187811 scopus 로고    scopus 로고
    • The multifaceted mismatch-repair system
    • Jiricny J, The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7: 335–346. 16612326
    • (2006) Nat Rev Mol Cell Biol , vol.7 , pp. 335-346
    • Jiricny, J.1
  • 23
    • 38049125557 scopus 로고    scopus 로고
    • Mechanisms and functions of DNA mismatch repair
    • Li GM, Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18: 85–98. 18157157
    • (2008) Cell Res , vol.18 , pp. 85-98
    • Li, G.M.1
  • 24
    • 34548761416 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs
    • Harrington JM, Kolodner RD, Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs. Mol Cell Biol. 2007;27: 6546–6554. 17636021
    • (2007) Mol Cell Biol , vol.27 , pp. 6546-6554
    • Harrington, J.M.1    Kolodner, R.D.2
  • 25
    • 84887269603 scopus 로고    scopus 로고
    • Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast
    • Romanova NV, Crouse GF, Different roles of eukaryotic MutS and MutL complexes in repair of small insertion and deletion loops in yeast. PLoS Genet. 2013;9: e1003920. doi: 10.1371/journal.pgen.1003920 24204320
    • (2013) PLoS Genet , vol.9 , pp. 1003920
    • Romanova, N.V.1    Crouse, G.F.2
  • 26
    • 77957979862 scopus 로고    scopus 로고
    • PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair
    • Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, et al. PCNA function in the activation and strand direction of MutLα endonuclease in mismatch repair. Proc Natl Acad Sci USA. 2010;107: 16066–16071. doi: 10.1073/pnas.1010662107 20713735
    • (2010) Proc Natl Acad Sci USA , vol.107 , pp. 16066-16071
    • Pluciennik, A.1    Dzantiev, L.2    Iyer, R.R.3    Constantin, N.4    Kadyrov, F.A.5
  • 28
    • 33746189409 scopus 로고    scopus 로고
    • Endonucleolytic function of MutLα in human mismatch repair
    • Kadyrov FA, Dzantiev L, Constantin N, Modrich P, Endonucleolytic function of MutLα in human mismatch repair. Cell. 2006;126: 297–308. 16873062
    • (2006) Cell , vol.126 , pp. 297-308
    • Kadyrov, F.A.1    Dzantiev, L.2    Constantin, N.3    Modrich, P.4
  • 29
    • 84887141327 scopus 로고    scopus 로고
    • Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair
    • Ghodgaonkar MM, Lazzaro F, Olivera-Pimentel M, Artola-Boran M, Cejka P, et al. Ribonucleotides misincorporated into DNA act as strand-discrimination signals in eukaryotic mismatch repair. Mol Cell. 2013;50: 323–332. doi: 10.1016/j.molcel.2013.03.019 23603115
    • (2013) Mol Cell , vol.50 , pp. 323-332
    • Ghodgaonkar, M.M.1    Lazzaro, F.2    Olivera-Pimentel, M.3    Artola-Boran, M.4    Cejka, P.5
  • 30
    • 84887156806 scopus 로고    scopus 로고
    • Ribonucleotides are signals for mismatch repair of leading-strand replication errors
    • Lujan SA, Williams JS, Clausen AR, Clark AB, Kunkel TA, Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell. 2013;50: 437–443. doi: 10.1016/j.molcel.2013.03.017 23603118
    • (2013) Mol Cell , vol.50 , pp. 437-443
    • Lujan, S.A.1    Williams, J.S.2    Clausen, A.R.3    Clark, A.B.4    Kunkel, T.A.5
  • 31
    • 0033782798 scopus 로고    scopus 로고
    • DNA replication fidelity
    • Kunkel TA, Bebenek K, DNA replication fidelity. Annu Rev Biochem. 2000;69: 497–529. 10966467
    • (2000) Annu Rev Biochem , vol.69 , pp. 497-529
    • Kunkel, T.A.1    Bebenek, K.2
  • 33
    • 23844522523 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae DNA polymerase δ: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions
    • Fortune JM, Pavlov YI, Welch CM, Johansson E, Burgers PM, et al. Saccharomyces cerevisiae DNA polymerase δ: high fidelity for base substitutions but lower fidelity for single- and multi-base deletions. J Biol Chem. 2005;280: 29980–29987. 15964835
    • (2005) J Biol Chem , vol.280 , pp. 29980-29987
    • Fortune, J.M.1    Pavlov, Y.I.2    Welch, C.M.3    Johansson, E.4    Burgers, P.M.5
  • 34
    • 0026698636 scopus 로고
    • Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR
    • Huang MM, Arnheim N, Goodman MF, Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR. Nucleic Acids Res. 1992;20: 4567–4573. 1408758
    • (1992) Nucleic Acids Res , vol.20 , pp. 4567-4573
    • Huang, M.M.1    Arnheim, N.2    Goodman, M.F.3
  • 35
    • 0026483792 scopus 로고
    • Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment)
    • Joyce CM, Sun XC, Grindley ND, Reactions at the polymerase active site that contribute to the fidelity of Escherichia coli DNA polymerase I (Klenow fragment). J Biol Chem. 1992;267: 24485–24500. 1447195
    • (1992) J Biol Chem , vol.267 , pp. 24485-24500
    • Joyce, C.M.1    Sun, X.C.2    Grindley, N.D.3
  • 36
    • 1642588255 scopus 로고    scopus 로고
    • Structures of mismatch replication errors observed in a DNA polymerase
    • Johnson SJ, Beese LS, Structures of mismatch replication errors observed in a DNA polymerase. Cell. 2004;116: 803–816. 15035983
    • (2004) Cell , vol.116 , pp. 803-816
    • Johnson, S.J.1    Beese, L.S.2
  • 37
    • 23344439233 scopus 로고    scopus 로고
    • A new reversion assay for measuring all possible base pair substitutions in Saccharomyces cerevisiae
    • Williams T-M, Fabbri RM, Reeves JW, Crouse GF, A new reversion assay for measuring all possible base pair substitutions in Saccharomyces cerevisiae. Genetics. 2005;170: 1423–1426. 15911571
    • (2005) Genetics , vol.170 , pp. 1423-1426
    • Williams, T.-M.1    Fabbri, R.M.2    Reeves, J.W.3    Crouse, G.F.4
  • 38
    • 0038371133 scopus 로고    scopus 로고
    • Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast
    • Pavlov YI, Mian IM, Kunkel TA, Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol. 2003;13: 744–748. 12725731
    • (2003) Curr Biol , vol.13 , pp. 744-748
    • Pavlov, Y.I.1    Mian, I.M.2    Kunkel, T.A.3
  • 39
    • 34547447592 scopus 로고    scopus 로고
    • Oligonucleotide transformation of yeast reveals mismatch repair complexes to be differentially active on DNA replication strands
    • Kow YW, Bao G, Reeves JW, Jinks-Robertson S, Crouse GF, Oligonucleotide transformation of yeast reveals mismatch repair complexes to be differentially active on DNA replication strands. Proc Natl Acad Sci USA. 2007;104: 11352–11357. 17592146
    • (2007) Proc Natl Acad Sci USA , vol.104 , pp. 11352-11357
    • Kow, Y.W.1    Bao, G.2    Reeves, J.W.3    Jinks-Robertson, S.4    Crouse, G.F.5
  • 40
    • 84876442276 scopus 로고    scopus 로고
    • Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast
    • Williams LN, Herr AJ, Preston BD, Emergence of DNA polymerase ε antimutators that escape error-induced extinction in yeast. Genetics. 2013;193: 751–770. doi: 10.1534/genetics.112.146910 23307893
    • (2013) Genetics , vol.193 , pp. 751-770
    • Williams, L.N.1    Herr, A.J.2    Preston, B.D.3
  • 41
    • 19944401050 scopus 로고    scopus 로고
    • The multiple biological roles of the 3′—>5′ exonuclease of Saccharomyces cerevisiae DNA polymerase δ require switching between the polymerase and exonuclease domains
    • Jin YH, Garg P, Stith CMW, Al Refai H, Sterling JF, et al. The multiple biological roles of the 3′—>5′ exonuclease of Saccharomyces cerevisiae DNA polymerase δ require switching between the polymerase and exonuclease domains. Mol Cell Biol. 2005;25: 461–471. 15601866
    • (2005) Mol Cell Biol , vol.25 , pp. 461-471
    • Jin, Y.H.1    Garg, P.2    Stith, C.M.W.3    Al Refai, H.4    Sterling, J.F.5
  • 42
    • 0037449727 scopus 로고    scopus 로고
    • Okazaki fragment maturation in yeast—II. Cooperation between the polymerase and 3′-5′-exonuclease activities of Pol δ in the creation of a ligatable nick
    • Jin YH, Ayyagari R, Resnick MA, Gordenin DA, Burgers PMJ, Okazaki fragment maturation in yeast—II. Cooperation between the polymerase and 3′-5′-exonuclease activities of Pol δ in the creation of a ligatable nick. J Biol Chem. 2003;278: 1626–1633. 12424237
    • (2003) J Biol Chem , vol.278 , pp. 1626-1633
    • Jin, Y.H.1    Ayyagari, R.2    Resnick, M.A.3    Gordenin, D.A.4    Burgers, P.M.J.5
  • 43
    • 0035942104 scopus 로고    scopus 로고
    • The 3′—>5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability
    • Jin YH, Obert R, Burgers PMJ, Kunkel TA, Resnick MA, et al. The 3′—>5′ exonuclease of DNA polymerase δ can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci USA. 2001;98: 5122–5127. 11309502
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 5122-5127
    • Jin, Y.H.1    Obert, R.2    Burgers, P.M.J.3    Kunkel, T.A.4    Resnick, M.A.5
  • 44
    • 33646390723 scopus 로고    scopus 로고
    • Evidence for extrinsic exonucleolytic proofreading
    • Nick McElhinny SA, Pavlov YI, Kunkel TA, Evidence for extrinsic exonucleolytic proofreading. Cell Cycle. 2006;5: 958–962. 16687920
    • (2006) Cell Cycle , vol.5 , pp. 958-962
    • Nick McElhinny, S.A.1    Pavlov, Y.I.2    Kunkel, T.A.3
  • 45
    • 0032925857 scopus 로고    scopus 로고
    • Genetic factors affecting the impact of DNA polymerase δ proofreading activity on mutation avoidance in yeast
    • Tran HT, Degtyareva NP, Gordenin DA, Resnick MA, Genetic factors affecting the impact of DNA polymerase δ proofreading activity on mutation avoidance in yeast. Genetics. 1999;152: 47–59. 10224242
    • (1999) Genetics , vol.152 , pp. 47-59
    • Tran, H.T.1    Degtyareva, N.P.2    Gordenin, D.A.3    Resnick, M.A.4
  • 46
    • 0033636253 scopus 로고    scopus 로고
    • Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3–01 mutants
    • Datta A, Schmeits JL, Amin NS, Lau PJ, Myung K, et al. Checkpoint-dependent activation of mutagenic repair in Saccharomyces cerevisiae pol3–01 mutants. Mol Cell. 2000;6: 593–603. 11030339
    • (2000) Mol Cell , vol.6 , pp. 593-603
    • Datta, A.1    Schmeits, J.L.2    Amin, N.S.3    Lau, P.J.4    Myung, K.5
  • 47
    • 78649701177 scopus 로고    scopus 로고
    • Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε
    • Aksenova A, Volkov K, Maceluch J, Pursell ZF, Rogozin IB, et al. Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε. PLoS Genet. 2010;6: e1001209. doi: 10.1371/journal.pgen.1001209 21124948
    • (2010) PLoS Genet , vol.6 , pp. 1001209
    • Aksenova, A.1    Volkov, K.2    Maceluch, J.3    Pursell, Z.F.4    Rogozin, I.B.5
  • 48
    • 80055094218 scopus 로고    scopus 로고
    • Mutator suppression and escape from replication error-induced extinction in yeast
    • Herr AJ, Ogawa M, Lawrence NA, Williams LN, Eggington JM, et al. Mutator suppression and escape from replication error-induced extinction in yeast. PLoS Genet. 2011;7: e1002282. doi: 10.1371/journal.pgen.1002282 22022273
    • (2011) PLoS Genet , vol.7 , pp. 1002282
    • Herr, A.J.1    Ogawa, M.2    Lawrence, N.A.3    Williams, L.N.4    Eggington, J.M.5
  • 49
    • 84897427928 scopus 로고    scopus 로고
    • A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading
    • Kane DP, Shcherbakova PV, A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading. Cancer Res. 2014;74: 1895–1901. doi: 10.1158/0008-5472.CAN-13-2892 24525744
    • (2014) Cancer Res , vol.74 , pp. 1895-1901
    • Kane, D.P.1    Shcherbakova, P.V.2
  • 50
    • 84901367573 scopus 로고    scopus 로고
    • DNA replication error-induced extinction of diploid yeast
    • Herr AJ, Kennedy SR, Knowels GM, Schultz EM, Preston BD, DNA replication error-induced extinction of diploid yeast. Genetics. 2014;196: 677–691. doi: 10.1534/genetics.113.160960 24388879
    • (2014) Genetics , vol.196 , pp. 677-691
    • Herr, A.J.1    Kennedy, S.R.2    Knowels, G.M.3    Schultz, E.M.4    Preston, B.D.5
  • 51
    • 0030962035 scopus 로고    scopus 로고
    • Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants
    • Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA, Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol. 1997;17: 2859–2865. 9111358
    • (1997) Mol Cell Biol , vol.17 , pp. 2859-2865
    • Tran, H.T.1    Keen, J.D.2    Kricker, M.3    Resnick, M.A.4    Gordenin, D.A.5
  • 52
    • 0035053395 scopus 로고    scopus 로고
    • Stationary-phase mutations in proofreading exonuclease-deficient strains of the yeast Saccharomyces cerevisiae
    • Babudri N, Pavlov YI, Matmati N, Ludovisi C, Achilli A, Stationary-phase mutations in proofreading exonuclease-deficient strains of the yeast Saccharomyces cerevisiae. Mol Gen Genet. 2001;265: 362–366.
    • (2001) Mol Gen Genet , vol.265 , pp. 362-366
    • Babudri, N.1    Pavlov, Y.I.2    Matmati, N.3    Ludovisi, C.4    Achilli, A.5
  • 53
    • 84884858314 scopus 로고    scopus 로고
    • Points of significance: error bars
    • Krzywinski M, Altman N, Points of significance: error bars. Nat Methods. 2013;10: 921–922. doi: 10.1038/nmeth.2659 24161969
    • (2013) Nat Methods , vol.10 , pp. 921-922
    • Krzywinski, M.1    Altman, N.2
  • 54
    • 84866050528 scopus 로고    scopus 로고
    • Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection
    • Carr PA, Wang HH, Sterling B, Isaacs FJ, Lajoie MJ, et al. Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection. Nucleic Acids Res. 2012;40: e132. 22638574
    • (2012) Nucleic Acids Res , vol.40 , pp. 132
    • Carr, P.A.1    Wang, H.H.2    Sterling, B.3    Isaacs, F.J.4    Lajoie, M.J.5
  • 55
    • 84871247687 scopus 로고    scopus 로고
    • Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering
    • Lajoie MJ, Gregg CJ, Mosberg JA, Washington GC, Church GM, Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering. Nucleic Acids Res. 2012;40: e170. doi: 10.1093/nar/gks751 22904085
    • (2012) Nucleic Acids Res , vol.40 , pp. 170
    • Lajoie, M.J.1    Gregg, C.J.2    Mosberg, J.A.3    Washington, G.C.4    Church, G.M.5
  • 56
    • 79952002951 scopus 로고    scopus 로고
    • Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering
    • Sawitzke JA, Costantino N, Li XT, Thomason LC, Bubunenko M, et al. Probing cellular processes with oligo-mediated recombination and using the knowledge gained to optimize recombineering. J Mol Biol. 2011;407: 45–59. doi: 10.1016/j.jmb.2011.01.030 21256136
    • (2011) J Mol Biol , vol.407 , pp. 45-59
    • Sawitzke, J.A.1    Costantino, N.2    Li, X.T.3    Thomason, L.C.4    Bubunenko, M.5
  • 57
    • 79957439984 scopus 로고    scopus 로고
    • Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion
    • Wang HH, Xu G, Vonner AJ, Church G, Modified bases enable high-efficiency oligonucleotide-mediated allelic replacement via mismatch repair evasion. Nucleic Acids Res. 2011;39: 7336–7347. doi: 10.1093/nar/gkr183 21609953
    • (2011) Nucleic Acids Res , vol.39 , pp. 7336-7347
    • Wang, H.H.1    Xu, G.2    Vonner, A.J.3    Church, G.4
  • 58
    • 77955083055 scopus 로고    scopus 로고
    • RecA-independent single-stranded DNA oligonucleotide-mediated mutagenesis
    • Murphy KC, Marinus MG, RecA-independent single-stranded DNA oligonucleotide-mediated mutagenesis. F1000 Biol Rep. 2010;2: 56. 20711416
    • (2010) F1000 Biol Rep , vol.2 , pp. 56
    • Murphy, K.C.1    Marinus, M.G.2
  • 59
    • 40949110562 scopus 로고    scopus 로고
    • Highly efficient deletion method for the engineering of plasmid DNA with single-stranded oligonucleotides
    • Lu LY, Huen MS, Tai AC, Liu DP, Cheah KS, et al. Highly efficient deletion method for the engineering of plasmid DNA with single-stranded oligonucleotides. BioTechniques. 2008;44: 217–224. 18330349
    • (2008) BioTechniques , vol.44 , pp. 217-224
    • Lu, L.Y.1    Huen, M.S.2    Tai, A.C.3    Liu, D.P.4    Cheah, K.S.5
  • 60
    • 0346103663 scopus 로고    scopus 로고
    • Enhanced levels of lambda red-mediated recombinants in mismatch repair mutants
    • Costantino N, Court DL, Enhanced levels of lambda red-mediated recombinants in mismatch repair mutants. Proc Natl Acad Sci USA. 2003;100: 15748–15753. 14673109
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 15748-15753
    • Costantino, N.1    Court, D.L.2
  • 61
    • 0344668833 scopus 로고    scopus 로고
    • Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli
    • Li XT, Costantino N, Lu LY, Liu DP, Watt RM, et al. Identification of factors influencing strand bias in oligonucleotide-mediated recombination in Escherichia coli. Nucleic Acids Res. 2003;31: 6674–6687. 14602928
    • (2003) Nucleic Acids Res , vol.31 , pp. 6674-6687
    • Li, X.T.1    Costantino, N.2    Lu, L.Y.3    Liu, D.P.4    Watt, R.M.5
  • 62
    • 33845614522 scopus 로고    scopus 로고
    • The involvement of replication in single stranded oligonucleotide-mediated gene repair
    • Huen MS, Li XT, Lu LY, Watt RM, Liu DP, et al. The involvement of replication in single stranded oligonucleotide-mediated gene repair. Nucleic Acids Res. 2006;34: 6183–6194. 17088285
    • (2006) Nucleic Acids Res , vol.34 , pp. 6183-6194
    • Huen, M.S.1    Li, X.T.2    Lu, L.Y.3    Watt, R.M.4    Liu, D.P.5
  • 63
    • 84861004618 scopus 로고    scopus 로고
    • Stable gene targeting in human cells using single-strand oligonucleotides with modified bases
    • Rios X, Briggs AW, Christodoulou D, Gorham JM, Seidman JG, et al. Stable gene targeting in human cells using single-strand oligonucleotides with modified bases. PLoS ONE. 2012;7: e36697. doi: 10.1371/journal.pone.0036697 22615794
    • (2012) PLoS ONE , vol.7 , pp. 36697
    • Rios, X.1    Briggs, A.W.2    Christodoulou, D.3    Gorham, J.M.4    Seidman, J.G.5
  • 64
    • 29744459683 scopus 로고    scopus 로고
    • Genomic sequence correction by single-stranded DNA oligonucleotides: role of DNA synthesis and chemical modifications of the oligonucleotide ends
    • Olsen PA, Randol M, Luna L, Brown T, Krauss S, Genomic sequence correction by single-stranded DNA oligonucleotides: role of DNA synthesis and chemical modifications of the oligonucleotide ends. J Gene Med. 2005;7: 1534–1544. 16025558
    • (2005) J Gene Med , vol.7 , pp. 1534-1544
    • Olsen, P.A.1    Randol, M.2    Luna, L.3    Brown, T.4    Krauss, S.5
  • 65
    • 20044370284 scopus 로고    scopus 로고
    • Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression
    • Wu XS, Xin L, Yin WX, Shang XY, Lu L, et al. Increased efficiency of oligonucleotide-mediated gene repair through slowing replication fork progression. Proc Natl Acad Sci USA. 2005;102: 2508–2513. 15695590
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 2508-2513
    • Wu, X.S.1    Xin, L.2    Yin, W.X.3    Shang, X.Y.4    Lu, L.5
  • 66
    • 70450223691 scopus 로고    scopus 로고
    • Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination
    • McLachlan J, Fernandez S, Helleday T, Bryant HE, Specific targeted gene repair using single-stranded DNA oligonucleotides at an endogenous locus in mammalian cells uses homologous recombination. DNA Repair (Amst). 2009;8: 1424–1433. doi: 10.1016/j.dnarep.2009.09.014 19854687
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1424-1433
    • McLachlan, J.1    Fernandez, S.2    Helleday, T.3    Bryant, H.E.4
  • 67
    • 15944373496 scopus 로고    scopus 로고
    • Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides
    • Olsen PA, Randol M, Krauss S, Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides. Gene Ther. 2005;12: 546–551. 15674399
    • (2005) Gene Ther , vol.12 , pp. 546-551
    • Olsen, P.A.1    Randol, M.2    Krauss, S.3
  • 68
    • 32844470294 scopus 로고    scopus 로고
    • Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus
    • Radecke S, Radecke F, Peter I, Schwarz K, Physical incorporation of a single-stranded oligodeoxynucleotide during targeted repair of a human chromosomal locus. J Gene Med. 2006;8: 217–228. 16142817
    • (2006) J Gene Med , vol.8 , pp. 217-228
    • Radecke, S.1    Radecke, F.2    Peter, I.3    Schwarz, K.4
  • 69
    • 79952484127 scopus 로고    scopus 로고
    • Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application
    • Aarts M, te Riele H, Progress and prospects: oligonucleotide-directed gene modification in mouse embryonic stem cells: a route to therapeutic application. Gene Ther. 2011;18: 213–219. doi: 10.1038/gt.2010.161 21160530
    • (2011) Gene Ther , vol.18 , pp. 213-219
    • Aarts, M.1    te Riele, H.2
  • 70
    • 78651275193 scopus 로고    scopus 로고
    • Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage
    • Aarts M, te Riele H, Subtle gene modification in mouse ES cells: evidence for incorporation of unmodified oligonucleotides without induction of DNA damage. Nucleic Acids Res. 2010;38: 6956–6967. doi: 10.1093/nar/gkq589 20601408
    • (2010) Nucleic Acids Res , vol.38 , pp. 6956-6967
    • Aarts, M.1    te Riele, H.2
  • 71
    • 2542503672 scopus 로고    scopus 로고
    • Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells
    • Zhang Y, Muyrers JP, Rientjes J, Stewart AF, Phage annealing proteins promote oligonucleotide-directed mutagenesis in Escherichia coli and mouse ES cells. BMC Mol Biol. 2003;4: 1. 12530927
    • (2003) BMC Mol Biol , vol.4 , pp. 1
    • Zhang, Y.1    Muyrers, J.P.2    Rientjes, J.3    Stewart, A.F.4
  • 72
    • 80052616310 scopus 로고    scopus 로고
    • Transient suppression of MLH1 allows effective single-nucleotide substitution by single-stranded DNA oligonucleotides
    • Dekker M, de Vries S, Aarts M, Dekker R, Brouwers C, et al. Transient suppression of MLH1 allows effective single-nucleotide substitution by single-stranded DNA oligonucleotides. Mutat Res. 2011;715: 52–60. doi: 10.1016/j.mrfmmm.2011.07.008 21801734
    • (2011) Mutat Res , vol.715 , pp. 52-60
    • Dekker, M.1    de Vries, S.2    Aarts, M.3    Dekker, R.4    Brouwers, C.5
  • 73
    • 79952774980 scopus 로고    scopus 로고
    • Characterization of MSH2 variants by endogenous gene modification in mouse embryonic stem cells
    • Wielders EA, Dekker RJ, Holt I, Morris GE, te Riele H, Characterization of MSH2 variants by endogenous gene modification in mouse embryonic stem cells. Hum Mutat. 2011;32: 389–396. doi: 10.1002/humu.21448 21309037
    • (2011) Hum Mutat , vol.32 , pp. 389-396
    • Wielders, E.A.1    Dekker, R.J.2    Holt, I.3    Morris, G.E.4    te Riele, H.5
  • 74
    • 65549110842 scopus 로고    scopus 로고
    • Gene modification in embryonic stem cells by single-stranded DNA oligonucleotides
    • Aarts M, Dekker M, Dekker R, de Vries S, van der Wal A, et al. Gene modification in embryonic stem cells by single-stranded DNA oligonucleotides. Methods Mol Biol. 2009;530: 79–99. doi: 10.1007/978-1-59745-471-1_5 19266328
    • (2009) Methods Mol Biol , vol.530 , pp. 79-99
    • Aarts, M.1    Dekker, M.2    Dekker, R.3    de Vries, S.4    van der Wal, A.5
  • 75
    • 59149099264 scopus 로고    scopus 로고
    • Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases
    • Olsen PA, Solhaug A, Booth JA, Gelazauskaite M, Krauss S, Cellular responses to targeted genomic sequence modification using single-stranded oligonucleotides and zinc-finger nucleases. DNA Repair (Amst). 2009;8: 298–308. doi: 10.1016/j.dnarep.2008.11.011 19071233
    • (2009) DNA Repair (Amst) , vol.8 , pp. 298-308
    • Olsen, P.A.1    Solhaug, A.2    Booth, J.A.3    Gelazauskaite, M.4    Krauss, S.5
  • 76
    • 65349090679 scopus 로고    scopus 로고
    • Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing
    • Papaioannou I, Disterer P, Owen JS, Use of internally nuclease-protected single-strand DNA oligonucleotides and silencing of the mismatch repair protein, MSH2, enhances the replication of corrected cells following gene editing. J Gene Med. 2009;11: 267–274. doi: 10.1002/jgm.1296 19153972
    • (2009) J Gene Med , vol.11 , pp. 267-274
    • Papaioannou, I.1    Disterer, P.2    Owen, J.S.3
  • 77
    • 47649120455 scopus 로고    scopus 로고
    • Oligonucleotide-mediated gene targeting in human hepatocytes: implications of mismatch repair
    • Igoucheva O, Alexeev V, Anni H, Rubin E, Oligonucleotide-mediated gene targeting in human hepatocytes: implications of mismatch repair. Oligonucleotides. 2008;18: 111–122. doi: 10.1089/oli.2008.0120 18637729
    • (2008) Oligonucleotides , vol.18 , pp. 111-122
    • Igoucheva, O.1    Alexeev, V.2    Anni, H.3    Rubin, E.4
  • 78
    • 33845608839 scopus 로고    scopus 로고
    • Active transcription promotes single-stranded oligonucleotide mediated gene repair
    • Huen MS, Lu LY, Liu DP, Huang JD, Active transcription promotes single-stranded oligonucleotide mediated gene repair. Biochem Biophys Res Commun. 2007;353: 33–39. 17174937
    • (2007) Biochem Biophys Res Commun , vol.353 , pp. 33-39
    • Huen, M.S.1    Lu, L.Y.2    Liu, D.P.3    Huang, J.D.4
  • 79
    • 33845676733 scopus 로고    scopus 로고
    • Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells
    • Aarts M, Dekker M, de Vries S, van der Wal A, te Riele H, Generation of a mouse mutant by oligonucleotide-mediated gene modification in ES cells. Nucleic Acids Res. 2006;34: e147. 17142234
    • (2006) Nucleic Acids Res , vol.34 , pp. 147
    • Aarts, M.1    Dekker, M.2    de Vries, S.3    van der Wal, A.4    te Riele, H.5
  • 80
    • 33645780411 scopus 로고    scopus 로고
    • Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3
    • Dekker M, Brouwers C, Aarts M, van der Torre J, de Vries S, et al. Effective oligonucleotide-mediated gene disruption in ES cells lacking the mismatch repair protein MSH3. Gene Ther. 2006;13: 686–694. 16437133
    • (2006) Gene Ther , vol.13 , pp. 686-694
    • Dekker, M.1    Brouwers, C.2    Aarts, M.3    van der Torre, J.4    de Vries, S.5
  • 81
    • 0037445212 scopus 로고    scopus 로고
    • Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides
    • Dekker M, Brouwers C, te Riele H, Targeted gene modification in mismatch-repair-deficient embryonic stem cells by single-stranded DNA oligonucleotides. Nucleic Acids Res. 2003;31: e27. 12626726
    • (2003) Nucleic Acids Res , vol.31 , pp. 27
    • Dekker, M.1    Brouwers, C.2    te Riele, H.3
  • 82
    • 84884599178 scopus 로고    scopus 로고
    • In Vivo bypass of 8-oxodG
    • Rodriguez GP, Song JB, Crouse GF, In Vivo bypass of 8-oxodG. PLoS Genet. 2013;9: e1003682. doi: 10.1371/journal.pgen.1003682 23935538
    • (2013) PLoS Genet , vol.9 , pp. 1003682
    • Rodriguez, G.P.1    Song, J.B.2    Crouse, G.F.3
  • 83
    • 84859963647 scopus 로고    scopus 로고
    • Mismatch repair dependent mutagenesis in nondividing cells
    • Rodriguez GP, Romanova NV, Bao G, Rouf NC, Kow YW, et al. Mismatch repair dependent mutagenesis in nondividing cells. Proc Natl Acad Sci USA. 2012;109: 6153–6158. doi: 10.1073/pnas.1115361109 22474380
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 6153-6158
    • Rodriguez, G.P.1    Romanova, N.V.2    Bao, G.3    Rouf, N.C.4    Kow, Y.W.5
  • 84
    • 84865052581 scopus 로고    scopus 로고
    • Transformation with oligonucleotides creating clustered changes in the yeast genome
    • Rodriguez GP, Song JB, Crouse GF, Transformation with oligonucleotides creating clustered changes in the yeast genome. PLoS ONE. 2012;7: e42905. doi: 10.1371/journal.pone.0042905 22916177
    • (2012) PLoS ONE , vol.7 , pp. 42905
    • Rodriguez, G.P.1    Song, J.B.2    Crouse, G.F.3
  • 85
    • 84911863498 scopus 로고    scopus 로고
    • Replisome-mediated Translesion Synthesis and Leading Strand Template Lesion Skipping Are Competing Bypass Mechanisms
    • Gabbai CB, Yeeles JT, Marians KJ, Replisome-mediated Translesion Synthesis and Leading Strand Template Lesion Skipping Are Competing Bypass Mechanisms. J Biol Chem. 2014;289: 32811–32823. doi: 10.1074/jbc.M114.613257 25301949
    • (2014) J Biol Chem , vol.289 , pp. 32811-32823
    • Gabbai, C.B.1    Yeeles, J.T.2    Marians, K.J.3
  • 86
    • 84893251073 scopus 로고    scopus 로고
    • Discontinuous leading-strand synthesis: a stop-start story
    • Yeeles JT, Discontinuous leading-strand synthesis: a stop-start story. Biochem Soc Trans. 2014;42: 25–34. doi: 10.1042/BST20130262 24450623
    • (2014) Biochem Soc Trans , vol.42 , pp. 25-34
    • Yeeles, J.T.1
  • 87
    • 37249019677 scopus 로고    scopus 로고
    • Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA
    • Mojas N, Lopes M, Jiricny J, Mismatch repair-dependent processing of methylation damage gives rise to persistent single-stranded gaps in newly replicated DNA. Genes Dev. 2007;21: 3342–3355. 18079180
    • (2007) Genes Dev , vol.21 , pp. 3342-3355
    • Mojas, N.1    Lopes, M.2    Jiricny, J.3
  • 88
    • 84906101503 scopus 로고    scopus 로고
    • Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork
    • Georgescu RE, Langston L, Yao NY, Yurieva O, Zhang D, et al. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol. 2014;21: 664–670. doi: 10.1038/nsmb.2851 24997598
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 664-670
    • Georgescu, R.E.1    Langston, L.2    Yao, N.Y.3    Yurieva, O.4    Zhang, D.5
  • 89
    • 84906101971 scopus 로고    scopus 로고
    • Delivering nonidentical twins
    • Kunkel TA, Burgers PM, Delivering nonidentical twins. Nat Struct Mol Biol. 2014;21: 649–651. doi: 10.1038/nsmb.2852 24997601
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 649-651
    • Kunkel, T.A.1    Burgers, P.M.2
  • 90
    • 78549249153 scopus 로고    scopus 로고
    • Mutagenicity of oxidized DNA precursors in living cells: Roles of nucleotide pool sanitization and DNA repair enzymes, and translesion synthesis DNA polymerases
    • Kamiya H, Mutagenicity of oxidized DNA precursors in living cells: Roles of nucleotide pool sanitization and DNA repair enzymes, and translesion synthesis DNA polymerases. Mutat Res. 2010;703: 32–36. doi: 10.1016/j.mrgentox.2010.06.003 20542139
    • (2010) Mutat Res , vol.703 , pp. 32-36
    • Kamiya, H.1
  • 91
    • 0037372874 scopus 로고    scopus 로고
    • The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions
    • Wyrzykowski J, Volkert MR, The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. J Bacteriol. 2003;185: 1701–1704. 12591888
    • (2003) J Bacteriol , vol.185 , pp. 1701-1704
    • Wyrzykowski, J.1    Volkert, M.R.2
  • 92
    • 0037018846 scopus 로고    scopus 로고
    • The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool
    • Colussi C, Parlanti E, Degan P, Aquilina G, Barnes D, et al. The mammalian mismatch repair pathway removes DNA 8-oxodGMP incorporated from the oxidized dNTP pool. Curr Biol. 2002;12: 912–918. 12062055
    • (2002) Curr Biol , vol.12 , pp. 912-918
    • Colussi, C.1    Parlanti, E.2    Degan, P.3    Aquilina, G.4    Barnes, D.5
  • 93
    • 0033197818 scopus 로고    scopus 로고
    • MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae
    • Ni TT, Marsischky GT, Kolodner RD, MSH2 and MSH6 are required for removal of adenine misincorporated opposite 8-oxo-guanine in S. cerevisiae. Mol Cell. 1999;4: 439–444. 10518225
    • (1999) Mol Cell , vol.4 , pp. 439-444
    • Ni, T.T.1    Marsischky, G.T.2    Kolodner, R.D.3
  • 94
    • 0027074532 scopus 로고
    • Roles of POL3, POL2 and PMS1 genes in maintaining accurate DNA replication
    • Morrison A, Sugino A, Roles of POL3, POL2 and PMS1 genes in maintaining accurate DNA replication. Chromosoma. 1992;102: S147–S149. 1291235
    • (1992) Chromosoma , vol.102 , pp. 147-149
    • Morrison, A.1    Sugino, A.2
  • 95
    • 0033578888 scopus 로고    scopus 로고
    • Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA
    • Marsischky GT, Kolodner RD, Biochemical characterization of the interaction between the Saccharomyces cerevisiae MSH2-MSH6 complex and mispaired bases in DNA. J Biol Chem. 1999;274: 26668–26682. 10480869
    • (1999) J Biol Chem , vol.274 , pp. 26668-26682
    • Marsischky, G.T.1    Kolodner, R.D.2
  • 96
    • 84884971078 scopus 로고    scopus 로고
    • Oxidative damage and mutagenesis in Saccharomyces cerevisiae: genetic studies of pathways affecting replication fidelity of 8-oxoguanine
    • Shockley AH, Doo DW, Rodriguez GP, Crouse GF, Oxidative damage and mutagenesis in Saccharomyces cerevisiae: genetic studies of pathways affecting replication fidelity of 8-oxoguanine. Genetics. 2013;195: 359–367. doi: 10.1534/genetics.113.153874 23893481
    • (2013) Genetics , vol.195 , pp. 359-367
    • Shockley, A.H.1    Doo, D.W.2    Rodriguez, G.P.3    Crouse, G.F.4
  • 97
    • 0032416476 scopus 로고    scopus 로고
    • The role of mismatch repair in the prevention of base pair mutations in Saccharomyces cerevisiae
    • Earley MC, Crouse GF, The role of mismatch repair in the prevention of base pair mutations in Saccharomyces cerevisiae. Proc Natl Acad Sci USA. 1998;95: 15487–15491. 9860995
    • (1998) Proc Natl Acad Sci USA , vol.95 , pp. 15487-15491
    • Earley, M.C.1    Crouse, G.F.2
  • 98
    • 0025163907 scopus 로고
    • Base mispair extension kinetics. Comparison of DNA polymerase α and reverse transcriptase
    • Mendelman LV, Petruska J, Goodman MF, Base mispair extension kinetics. Comparison of DNA polymerase α and reverse transcriptase. J Biol Chem. 1990;265: 2338–2346. 1688852
    • (1990) J Biol Chem , vol.265 , pp. 2338-2346
    • Mendelman, L.V.1    Petruska, J.2    Goodman, M.F.3
  • 99
    • 78549285927 scopus 로고    scopus 로고
    • Oxidized purine nucleotides, genome instability and neurodegeneration
    • Ventura I, Russo MT, De LG, Bignami M, Oxidized purine nucleotides, genome instability and neurodegeneration. Mutat Res. 2010;703: 59–65. doi: 10.1016/j.mrgentox.2010.06.008 20601098
    • (2010) Mutat Res , vol.703 , pp. 59-65
    • Ventura, I.1    Russo, M.T.2    De, L.G.3    Bignami, M.4
  • 100
    • 84868149427 scopus 로고    scopus 로고
    • Mismatch repair balances leading and lagging strand DNA replication fidelity
    • Lujan SA, Williams JS, Pursell ZF, Abdulovic-Cui AA, Clark AB, et al. Mismatch repair balances leading and lagging strand DNA replication fidelity. PLoS Genet. 2012;8: e1003016. doi: 10.1371/journal.pgen.1003016 23071460
    • (2012) PLoS Genet , vol.8 , pp. 1003016
    • Lujan, S.A.1    Williams, J.S.2    Pursell, Z.F.3    Abdulovic-Cui, A.A.4    Clark, A.B.5
  • 101
    • 9244225098 scopus 로고    scopus 로고
    • Mutants in the Exo I motif of Escherichia coli dnaQ: Defective proofreading and inviability due to error catastrophe
    • Fijalkowska IJ, Schaaper RM, Mutants in the Exo I motif of Escherichia coli dnaQ: Defective proofreading and inviability due to error catastrophe. Proc Natl Acad Sci USA. 1996;93: 2856–2861. 8610131
    • (1996) Proc Natl Acad Sci USA , vol.93 , pp. 2856-2861
    • Fijalkowska, I.J.1    Schaaper, R.M.2
  • 102
    • 0030935386 scopus 로고    scopus 로고
    • DNA polymerase δ is required for human mismatch repair in vitro
    • Longley MJ, Pierce AJ, Modrich P, DNA polymerase δ is required for human mismatch repair in vitro. J Biol Chem. 1997;272: 10917–10921. 9099749
    • (1997) J Biol Chem , vol.272 , pp. 10917-10921
    • Longley, M.J.1    Pierce, A.J.2    Modrich, P.3
  • 103
    • 66649124883 scopus 로고    scopus 로고
    • A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair
    • Kadyrov FA, Genschel J, Fang Y, Penland E, Edelmann W, et al. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc Natl Acad Sci USA. 2009;106: 8495–8500. doi: 10.1073/pnas.0903654106 19420220
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 8495-8500
    • Kadyrov, F.A.1    Genschel, J.2    Fang, Y.3    Penland, E.4    Edelmann, W.5
  • 104
    • 33750083332 scopus 로고    scopus 로고
    • Mechanisms in eukaryotic mismatch repair
    • Modrich P, Mechanisms in eukaryotic mismatch repair. J Biol Chem. 2006;281: 30305–30309. 16905530
    • (2006) J Biol Chem , vol.281 , pp. 30305-30309
    • Modrich, P.1
  • 105
    • 84868710374 scopus 로고    scopus 로고
    • DNA polymerase delta in DNA replication and genome maintenance
    • Prindle MJ, Loeb LA, DNA polymerase delta in DNA replication and genome maintenance. Environ Mol Mutagen. 2012;53: 666–682. doi: 10.1002/em.21745 23065663
    • (2012) Environ Mol Mutagen , vol.53 , pp. 666-682
    • Prindle, M.J.1    Loeb, L.A.2
  • 107
    • 84877747678 scopus 로고    scopus 로고
    • DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer
    • Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, et al. DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. Hum Mol Genet. 2013;22: 2820–2828. doi: 10.1093/hmg/ddt131 23528559
    • (2013) Hum Mol Genet , vol.22 , pp. 2820-2828
    • Church, D.N.1    Briggs, S.E.2    Palles, C.3    Domingo, E.4    Kearsey, S.J.5
  • 108
    • 84873096362 scopus 로고    scopus 로고
    • Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas
    • Palles C, Cazier JB, Howarth KM, Domingo E, Jones AM, et al. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat Genet. 2013;45: 136–144. doi: 10.1038/ng.2503 23263490
    • (2013) Nat Genet , vol.45 , pp. 136-144
    • Palles, C.1    Cazier, J.B.2    Howarth, K.M.3    Domingo, E.4    Jones, A.M.5
  • 109
    • 84896739540 scopus 로고    scopus 로고
    • Replicative DNA polymerase mutations in cancer
    • Heitzer E, Tomlinson I, Replicative DNA polymerase mutations in cancer. Curr Opin Genet Dev. 2014;24: 107–113. doi: 10.1016/j.gde.2013.12.005 24583393
    • (2014) Curr Opin Genet Dev , vol.24 , pp. 107-113
    • Heitzer, E.1    Tomlinson, I.2
  • 110
    • 84903206601 scopus 로고    scopus 로고
    • POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium
    • Meng B, Hoang LN, McIntyre JB, Duggan MA, Nelson GS, et al. POLE exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. Gynecol Oncol. 2014.
    • (2014) Gynecol Oncol
    • Meng, B.1    Hoang, L.N.2    McIntyre, J.B.3    Duggan, M.A.4    Nelson, G.S.5
  • 111
    • 70350126567 scopus 로고    scopus 로고
    • DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice
    • Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, et al. DNA polymerase ε and δ proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci USA. 2009;106: 17101–17104. doi: 10.1073/pnas.0907147106 19805137
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 17101-17104
    • Albertson, T.M.1    Ogawa, M.2    Bugni, J.M.3    Hays, L.E.4    Chen, Y.5
  • 112
    • 0037180555 scopus 로고    scopus 로고
    • High incidence of epithelial cancers in mice deficient for DNA polymerase δ proofreading
    • Goldsby RE, Hays LE, Chen X, Olmsted EA, Slayton WB, et al. High incidence of epithelial cancers in mice deficient for DNA polymerase δ proofreading. Proc Natl Acad Sci USA. 2002;99: 15560–15565. 12429860
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 15560-15565
    • Goldsby, R.E.1    Hays, L.E.2    Chen, X.3    Olmsted, E.A.4    Slayton, W.B.5
  • 113
    • 0030709433 scopus 로고    scopus 로고
    • Mutation in the mismatch repair gene Msh6 causes cancer susceptibility
    • Edelmann W, Yang K, Umar A, Heyer J, Kirkland L, et al. Mutation in the mismatch repair gene Msh6 causes cancer susceptibility. Cell. 1997;91: 467–477. 9390556
    • (1997) Cell , vol.91 , pp. 467-477
    • Edelmann, W.1    Yang, K.2    Umar, A.3    Heyer, J.4    Kirkland, L.5
  • 114
    • 76349108011 scopus 로고    scopus 로고
    • Risks of Lynch syndrome cancers for MSH6 mutation carriers
    • Baglietto L, Lindor NM, Dowty JG, White DM, Wagner A, et al. Risks of Lynch syndrome cancers for MSH6 mutation carriers. J Natl Cancer Inst. 2010;102: 193–201. doi: 10.1093/jnci/djp473 20028993
    • (2010) J Natl Cancer Inst , vol.102 , pp. 193-201
    • Baglietto, L.1    Lindor, N.M.2    Dowty, J.G.3    White, D.M.4    Wagner, A.5
  • 115
    • 0032579440 scopus 로고    scopus 로고
    • Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications
    • Brachmann CB, Davies A, Cost GJ, Caputo E, Li JC, et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 1998;14: 115–132. 9483801
    • (1998) Yeast , vol.14 , pp. 115-132
    • Brachmann, C.B.1    Davies, A.2    Cost, G.J.3    Caputo, E.4    Li, J.C.5
  • 116
    • 0034903337 scopus 로고    scopus 로고
    • In vivo site-directed mutagenesis using oligonucleotides
    • Storici F, Lewis LK, Resnick MA, In vivo site-directed mutagenesis using oligonucleotides. Nat Biotechnol. 2001;19: 773–776. 11479573
    • (2001) Nat Biotechnol , vol.19 , pp. 773-776
    • Storici, F.1    Lewis, L.K.2    Resnick, M.A.3
  • 117
    • 0033529707 scopus 로고    scopus 로고
    • Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis
    • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285: 901–906. 10436161
    • (1999) Science , vol.285 , pp. 901-906
    • Winzeler, E.A.1    Shoemaker, D.D.2    Astromoff, A.3    Liang, H.4    Anderson, K.5
  • 118
    • 0029994841 scopus 로고    scopus 로고
    • A new efficient gene disruption cassette for repeated use in budding yeast
    • Güldener U, Heck S, Fiedler T, Beinhauer J, Hegemann JH, A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24: 2519–2524. 8692690
    • (1996) Nucleic Acids Res , vol.24 , pp. 2519-2524
    • Güldener, U.1    Heck, S.2    Fiedler, T.3    Beinhauer, J.4    Hegemann, J.H.5
  • 119
    • 77956803854 scopus 로고    scopus 로고
    • New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates
    • Carter Z, Delneri D, New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast. 2010;27: 765–775. doi: 10.1002/yea.1774 20641014
    • (2010) Yeast , vol.27 , pp. 765-775
    • Carter, Z.1    Delneri, D.2
  • 120
    • 0025978949 scopus 로고
    • Getting started with yeast
    • Sherman F, Getting started with yeast. Methods Enzymol. 1991;194: 3–21. 2005794
    • (1991) Methods Enzymol , vol.194 , pp. 3-21
    • Sherman, F.1
  • 121
    • 34548590559 scopus 로고    scopus 로고
    • On Haldane′s formulation of Luria and Delbruck′s mutation model
    • Zheng Q, On Haldane′s formulation of Luria and Delbruck′s mutation model. Math Biosci. 2007;209: 500–513. 17462675
    • (2007) Math Biosci , vol.209 , pp. 500-513
    • Zheng, Q.1
  • 122
    • 23044450296 scopus 로고    scopus 로고
    • New algorithms for Luria-Delbruck fluctuation analysis
    • Zheng Q, New algorithms for Luria-Delbruck fluctuation analysis. Math Biosci. 2005;196: 198–214. 15950991
    • (2005) Math Biosci , vol.196 , pp. 198-214
    • Zheng, Q.1
  • 123
    • 0036226637 scopus 로고    scopus 로고
    • Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation
    • Zheng Q, Statistical and algorithmic methods for fluctuation analysis with SALVADOR as an implementation. Math Biosci. 2002;176: 237–252. 11916511
    • (2002) Math Biosci , vol.176 , pp. 237-252
    • Zheng, Q.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.