메뉴 건너뛰기




Volumn 19, Issue 4, 2014, Pages 363-371

Insight into the role of mTOR and metabolism in T cells reveals new potential approaches to preventing graft rejection

Author keywords

Immunosuppression; Mammalian target of rapamycin; Metabolism; T cells; Transplantation

Indexed keywords

MAMMALIAN TARGET OF RAPAMYCIN; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 1; MAMMALIAN TARGET OF RAPAMYCIN COMPLEX 2; OXYGEN; RAPAMYCIN; STEROL REGULATORY ELEMENT BINDING PROTEIN 1; TARGET OF RAPAMYCIN KINASE;

EID: 84921406018     PISSN: 10872418     EISSN: 15317013     Source Type: Journal    
DOI: 10.1097/MOT.0000000000000098     Document Type: Review
Times cited : (25)

References (108)
  • 1
    • 0016724057 scopus 로고
    • Rapamycin (AY-22, 989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle
    • Vézina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28:721-726.
    • (1975) J Antibiot (Tokyo) , vol.28 , pp. 721-726
    • Vézina, C.1    Kudelski, A.2    Sehgal, S.N.3
  • 2
    • 0025776523 scopus 로고
    • Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast
    • Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991; 253:905-909.
    • (1991) Science , vol.253 , pp. 905-909
    • Heitman, J.1    Movva, N.R.2    Hall, M.N.3
  • 3
    • 0030021524 scopus 로고    scopus 로고
    • TOR controls translation initiation and early G1 progression in yeast
    • Barbet NC, Schneider U, Helliwell SB, et al. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 1996; 7:25-42.
    • (1996) Mol Biol Cell , vol.7 , pp. 25-42
    • Barbet, N.C.1    Schneider, U.2    Helliwell, S.B.3
  • 4
    • 0033592983 scopus 로고    scopus 로고
    • Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins
    • Hardwick JS, Kuruvilla FG, Tong JK, et al. Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 1999; 96:14866-14870.
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 14866-14870
    • Hardwick, J.S.1    Kuruvilla, F.G.2    Tong, J.K.3
  • 5
    • 0034312315 scopus 로고    scopus 로고
    • Regulation of cellular growth by the Drosophila target of rapamycin dTOR
    • Zhang H, Stallock JP, Ng JC, et al. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev 2000; 14:2712-2724.
    • (2000) Genes Dev , vol.14 , pp. 2712-2724
    • Zhang, H.1    Stallock, J.P.2    Ng, J.C.3
  • 6
    • 0025099697 scopus 로고
    • Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin
    • Dumont FJ, Staruch MJ, Koprak SL, et al. Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 1990; 144:251-258.
    • (1990) J Immunol , vol.144 , pp. 251-258
    • Dumont, F.J.1    Staruch, M.J.2    Koprak, S.L.3
  • 7
    • 33747819801 scopus 로고    scopus 로고
    • Sabatini DM. MTOR and cancer: Insights into a complex relationship
    • Sabatini DM. mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 2006; 6:729-734.
    • (2006) Nat Rev Cancer , vol.6 , pp. 729-734
  • 9
    • 77957054466 scopus 로고    scopus 로고
    • The mammalian target of rapamycin: Linking T cell differentiation, function, and metabolism
    • Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010; 33:301-311.
    • (2010) Immunity , vol.33 , pp. 301-311
    • Powell, J.D.1    Delgoffe, G.M.2
  • 10
    • 84879195658 scopus 로고    scopus 로고
    • MTOR and lymphocyte metabolism
    • Zeng H, Chi H. mTOR and lymphocyte metabolism. Curr Opin Immunol 2013; 25:347-355.
    • (2013) Curr Opin Immunol , vol.25 , pp. 347-355
    • Zeng, H.1    Chi, H.2
  • 11
    • 77952280516 scopus 로고    scopus 로고
    • Anergic T cells are metabolically anergic
    • Zheng Y, Delgoffe GM, Meyer CF, et al. Anergic T cells are metabolically anergic. J Immunol 2009; 183:6095-6101.
    • (2009) J Immunol , vol.183 , pp. 6095-6101
    • Zheng, Y.1    Delgoffe, G.M.2    Meyer, C.F.3
  • 12
    • 78650510609 scopus 로고    scopus 로고
    • Sabatini DM. MTOR: From growth signal integration to cancer, diabetes and ageing
    • Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12:21-35.
    • (2011) Nat Rev Mol Cell Biol , vol.12 , pp. 21-35
    • Zoncu, R.1    Efeyan, A.2
  • 13
    • 84859778293 scopus 로고    scopus 로고
    • Sabatini DM. MTOR signaling in growth control and disease
    • Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 2012; 149:274-293.
    • (2012) Cell , vol.149 , pp. 274-293
    • Laplante, M.1
  • 14
    • 84899094151 scopus 로고    scopus 로고
    • The AGC kinase SGK1 regulates T1 and T2 differentiation downstream of the mTORC2 complex
    • Heikamp EB, Patel CH, Collins S, et al. The AGC kinase SGK1 regulates T1 and T2 differentiation downstream of the mTORC2 complex. Nat Immunol 2014; 15:457-464.
    • (2014) Nat Immunol , vol.15 , pp. 457-464
    • Heikamp, E.B.1    Patel, C.H.2    Collins, S.3
  • 15
    • 66949173728 scopus 로고    scopus 로고
    • The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment
    • Delgoffe GM, Kole TP, Zheng Y, et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 2009; 30:832-844.
    • (2009) Immunity , vol.30 , pp. 832-844
    • Delgoffe, G.M.1    Kole, T.P.2    Zheng, Y.3
  • 16
    • 79952985551 scopus 로고    scopus 로고
    • The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2
    • Delgoffe GM, Pollizzi KN, Waickman AT, et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat Immunol 2011; 12:295-303.
    • (2011) Nat Immunol , vol.12 , pp. 295-303
    • Delgoffe, G.M.1    Pollizzi, K.N.2    Waickman, A.T.3
  • 17
    • 84878238075 scopus 로고    scopus 로고
    • Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways
    • Kim JS, Sklarz T, Banks LB, et al. Natural and inducible TH17 cells are regulated differently by Akt and mTOR pathways. Nat Immunol 2013; 14:611-618.
    • (2013) Nat Immunol , vol.14 , pp. 611-618
    • Kim, J.S.1    Sklarz, T.2    Banks, L.B.3
  • 18
    • 77953897189 scopus 로고    scopus 로고
    • Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways
    • Lee K, Gudapati P, Dragovic S, et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 2010; 32:743-753.
    • (2010) Immunity , vol.32 , pp. 743-753
    • Lee, K.1    Gudapati, P.2    Dragovic, S.3
  • 19
    • 84877965001 scopus 로고    scopus 로고
    • Regulation of mTORC1 and its impact on gene expression at a glance
    • Laplante M, Sabatini DM. Regulation of mTORC1 and its impact on gene expression at a glance. J Cell Sci 2013; 126:1713-1719.
    • (2013) J Cell Sci , vol.126 , pp. 1713-1719
    • Laplante, M.1    Sabatini, D.M.2
  • 20
    • 34547099855 scopus 로고    scopus 로고
    • PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
    • Wang L, Harris TE, Roth RA, Lawrence JC Jr. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007; 282:20036-20044.
    • (2007) J Biol Chem , vol.282 , pp. 20036-20044
    • Wang, L.1    Harris, T.E.2    Roth, R.A.3    Lawrence Jr., J.C.4
  • 21
    • 79954576972 scopus 로고    scopus 로고
    • Transcriptional control of cellular metabolism by mTOR signaling
    • Yecies JL, Manning BD. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res 2011; 71:2815-2820.
    • (2011) Cancer Res , vol.71 , pp. 2815-2820
    • Yecies, J.L.1    Manning, B.D.2
  • 22
    • 0037662713 scopus 로고    scopus 로고
    • Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability
    • Beugnet A, Tee AR, Taylor PM, Proud CG. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem J 2003; 372:555-566.
    • (2003) Biochem J , vol.372 , pp. 555-566
    • Beugnet, A.1    Tee, A.R.2    Taylor, P.M.3    Proud, C.G.4
  • 23
    • 84862539692 scopus 로고    scopus 로고
    • The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis
    • 5:ra42
    • Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012; 5:ra42.
    • (2012) Sci Signal
    • Roczniak-Ferguson, A.1    Petit, C.S.2    Froehlich, F.3
  • 24
    • 58649092475 scopus 로고    scopus 로고
    • MTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1)
    • García-Martínez JM, Alessi DR. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum-and glucocorticoid-induced protein kinase 1 (SGK1). Biochem J 2008; 416:375-385.
    • (2008) Biochem J , vol.416 , pp. 375-385
    • García-Martínez, J.M.1    Alessi, D.R.2
  • 25
    • 33751348056 scopus 로고    scopus 로고
    • Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1
    • Guertin DA, Stevens DM, Thoreen CC, et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev Cell 2006; 11:859-871.
    • (2006) Dev Cell , vol.11 , pp. 859-871
    • Guertin, D.A.1    Stevens, D.M.2    Thoreen, C.C.3
  • 26
    • 47949104258 scopus 로고    scopus 로고
    • Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling
    • Ikenoue T, Inoki K, Yang Q, et al. Essential function of TORC2 in PKC and Akt turn motif phosphorylation, maturation and signalling. EMBO J 2008; 27:1919-1931.
    • (2008) EMBO J , vol.27 , pp. 1919-1931
    • Ikenoue, T.1    Inoki, K.2    Yang, Q.3
  • 28
    • 33746334804 scopus 로고    scopus 로고
    • Kruppel-like factor 2 regulates thymocyte and T-cell migration
    • Carlson CM, Endrizzi BT, Wu J, et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature 2006; 442:299-302.
    • (2006) Nature , vol.442 , pp. 299-302
    • Carlson, C.M.1    Endrizzi, B.T.2    Wu, J.3
  • 29
    • 51549111249 scopus 로고    scopus 로고
    • FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase
    • Fabre S, Carrette F, Chen J, et al. FOXO1 regulates L-Selectin and a network of human T cell homing molecules downstream of phosphatidylinositol 3-kinase. J Immunol 2008; 181:2980-2989.
    • (2008) J Immunol , vol.181 , pp. 2980-2989
    • Fabre, S.1    Carrette, F.2    Chen, J.3
  • 30
    • 58449102260 scopus 로고    scopus 로고
    • Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor
    • Kerdiles YM, Beisner DR, Tinoco R, et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nat Immunol 2009; 10:176-184.
    • (2009) Nat Immunol , vol.10 , pp. 176-184
    • Kerdiles, Y.M.1    Beisner, D.R.2    Tinoco, R.3
  • 32
    • 84882735072 scopus 로고    scopus 로고
    • The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection
    • Kim MV, Ouyang W, Liao W, et al. The transcription factor Foxo1 controls central-memory CD8+ T cell responses to infection. Immunity 2013; 39:286-297.
    • (2013) Immunity , vol.39 , pp. 286-297
    • Kim, M.V.1    Ouyang, W.2    Liao, W.3
  • 33
    • 33644556146 scopus 로고    scopus 로고
    • Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin
    • Colombetti S, Basso V, Mueller DL, Mondino A. Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin. J Immunol 2006; 176:2730-2738.
    • (2006) J Immunol , vol.176 , pp. 2730-2738
    • Colombetti, S.1    Basso, V.2    Mueller, D.L.3    Mondino, A.4
  • 34
    • 0031833563 scopus 로고    scopus 로고
    • Mammalian target of rapamycin: Immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling
    • Abraham RT. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr Opin Immunol 1998; 10:330-336.
    • (1998) Curr Opin Immunol , vol.10 , pp. 330-336
    • Abraham, R.T.1
  • 35
    • 26844490420 scopus 로고    scopus 로고
    • Sequence motifs in IL-4R alpha mediating cell-cycle progression of primary lymphocytes
    • Stephenson LM, Park DS, Mora AL, et al. Sequence motifs in IL-4R alpha mediating cell-cycle progression of primary lymphocytes. J Immunol 2005; 175:5178-5185.
    • (2005) J Immunol , vol.175 , pp. 5178-5185
    • Stephenson, L.M.1    Park, D.S.2    Mora, A.L.3
  • 36
    • 0038643484 scopus 로고    scopus 로고
    • Rheb promotes cell growth as a component of the insulin/TOR signalling network
    • Saucedo LJ, Gao X, Chiarelli DA, et al. Rheb promotes cell growth as a component of the insulin/TOR signalling network. Nat Cell Biol 2003; 5:566-571.
    • (2003) Nat Cell Biol , vol.5 , pp. 566-571
    • Saucedo, L.J.1    Gao, X.2    Chiarelli, D.A.3
  • 37
    • 0028237671 scopus 로고
    • Rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein
    • Yamagata K, Sanders LK, Kaufmann WE, et al. rheb, a growth factor-and synaptic activity-regulated gene, encodes a novel Ras-related protein. J Biol Chem 1994; 269:16333-16339.
    • (1994) J Biol Chem , vol.269 , pp. 16333-16339
    • Yamagata, K.1    Sanders, L.K.2    Kaufmann, W.E.3
  • 38
    • 0031039427 scopus 로고    scopus 로고
    • Rheb interacts with Raf-1 kinase and may function to integrate growth factor-and protein kinase A-dependent signals
    • Yee WM, Worley PF. Rheb interacts with Raf-1 kinase and may function to integrate growth factor-and protein kinase A-dependent signals. Mol Cell Biol 1997; 17:921-933.
    • (1997) Mol Cell Biol , vol.17 , pp. 921-933
    • Yee, W.M.1    Worley, P.F.2
  • 39
    • 84871861969 scopus 로고    scopus 로고
    • PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells
    • Finlay DK, Rosenzweig E, Sinclair LV, et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J Exp Med 2012; 209:2441-2453.
    • (2012) J Exp Med , vol.209 , pp. 2441-2453
    • Finlay, D.K.1    Rosenzweig, E.2    Sinclair, L.V.3
  • 40
    • 73949088551 scopus 로고    scopus 로고
    • PD-L1 regulates the development, maintenance, and function of induced regulatory T cells
    • Francisco LM, Salinas VH, Brown KE, et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009; 206:3015-3029.
    • (2009) J Exp Med , vol.206 , pp. 3015-3029
    • Francisco, L.M.1    Salinas, V.H.2    Brown, K.E.3
  • 41
    • 79952119614 scopus 로고    scopus 로고
    • ER stress inhibits mTORC2 and Akt signaling through GSK-3b-mediated phosphorylation of rictor
    • 4:ra10
    • Chen CH, Shaikenov T, Peterson TR, et al. ER stress inhibits mTORC2 and Akt signaling through GSK-3b-mediated phosphorylation of rictor. Sci Signal 2011; 4:ra10.
    • (2011) Sci Signal
    • Chen, C.H.1    Shaikenov, T.2    Peterson, T.R.3
  • 42
    • 79952293503 scopus 로고    scopus 로고
    • Activation of mTORC2 by association with the ribosome
    • Zinzalla V, Stracka D, Oppliger W, Hall MN. Activation of mTORC2 by association with the ribosome. Cell 2011; 144:757-768.
    • (2011) Cell , vol.144 , pp. 757-768
    • Zinzalla, V.1    Stracka, D.2    Oppliger, W.3    Hall, M.N.4
  • 43
    • 33751029468 scopus 로고    scopus 로고
    • Dissecting the mechanism of T-cell anergy with immunophilin ligands
    • Powell JD, Zheng Y. Dissecting the mechanism of T-cell anergy with immunophilin ligands. Curr Opin Investig Drugs 2006; 7:1002-1007.
    • (2006) Curr Opin Investig Drugs , vol.7 , pp. 1002-1007
    • Powell, J.D.1    Zheng, Y.2
  • 44
    • 0025736529 scopus 로고
    • Comparison of the effects of FK-506, cyclosporin A and rapamycin on IL-2 production
    • Henderson DJ, Naya I, Bundick RV, et al. Comparison of the effects of FK-506, cyclosporin A and rapamycin on IL-2 production. Immunology 1991; 73:316-321.
    • (1991) Immunology , vol.73 , pp. 316-321
    • Henderson, D.J.1    Naya, I.2    Bundick, R.V.3
  • 46
    • 33646023695 scopus 로고    scopus 로고
    • Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB
    • Sarbassov DD, Ali SM, Sengupta S, et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 2006; 22:159-168.
    • (2006) Mol Cell , vol.22 , pp. 159-168
    • Sarbassov, D.D.1    Ali, S.M.2    Sengupta, S.3
  • 47
    • 70449390905 scopus 로고    scopus 로고
    • Rapamycin and mTOR kinase inhibitors
    • Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol 2008; 1:27-36.
    • (2008) J Chem Biol , vol.1 , pp. 27-36
    • Ballou, L.M.1    Lin, R.Z.2
  • 48
    • 76549107351 scopus 로고    scopus 로고
    • Beyond rapalog therapy: Preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2
    • Yu K, Shi C, Toral-Barza L, et al. Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2. Cancer Res 2010; 70:621-631.
    • (2010) Cancer Res , vol.70 , pp. 621-631
    • Yu, K.1    Shi, C.2    Toral-Barza, L.3
  • 49
    • 68049137608 scopus 로고    scopus 로고
    • Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin
    • Yu K, Toral-Barza L, Shi C, et al. Biochemical, cellular, and in vivo activity of novel ATP-competitive and selective inhibitors of the mammalian target of rapamycin. Cancer Res 2009; 69:6232-6240.
    • (2009) Cancer Res , vol.69 , pp. 6232-6240
    • Yu, K.1    Toral-Barza, L.2    Shi, C.3
  • 50
    • 84890040690 scopus 로고    scopus 로고
    • TSC1 regulates the balance between effector and regulatory T cells
    • Park Y, Jin HS, Lopez J, et al. TSC1 regulates the balance between effector and regulatory T cells. J Clin Invest 2013; 123:5165-5178.
    • (2013) J Clin Invest , vol.123 , pp. 5165-5178
    • Park, Y.1    Jin, H.S.2    Lopez, J.3
  • 51
    • 84890137621 scopus 로고    scopus 로고
    • T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming
    • Yang K, Shrestha S, Zeng H, et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 2013; 39:1043-1056.
    • (2013) Immunity , vol.39 , pp. 1043-1056
    • Yang, K.1    Shrestha, S.2    Zeng, H.3
  • 52
    • 41149113441 scopus 로고    scopus 로고
    • The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells
    • Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 2008; 205:565-574.
    • (2008) J Exp Med , vol.205 , pp. 565-574
    • Haxhinasto, S.1    Mathis, D.2    Benoist, C.3
  • 53
    • 45549098562 scopus 로고    scopus 로고
    • T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR
    • Sauer S, Bruno L, Hertweck A, et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc Natl Acad Sci U S A 2008; 105:7797-7802.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 7797-7802
    • Sauer, S.1    Bruno, L.2    Hertweck, A.3
  • 54
    • 46949088630 scopus 로고    scopus 로고
    • De novo induction of antigenspecific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR
    • Kang J, Huddleston SJ, Fraser JM, Khoruts A. De novo induction of antigenspecific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J Leukoc Biol 2008; 83:1230-1239.
    • (2008) J Leukoc Biol , vol.83 , pp. 1230-1239
    • Kang, J.1    Huddleston, S.J.2    Fraser, J.M.3    Khoruts, A.4
  • 55
    • 67650105331 scopus 로고    scopus 로고
    • Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin
    • Strauss L, Czystowska M, Szajnik M, et al. Differential responses of human regulatory T cells (Treg) and effector T cells to rapamycin. PLoS One 2009; 4:e5994.
    • (2009) PLoS One , vol.4
    • Strauss, L.1    Czystowska, M.2    Szajnik, M.3
  • 56
    • 38049177784 scopus 로고    scopus 로고
    • Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells
    • Zeiser R, Leveson-Gower DB, Zambricki EA, et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 2008; 111:453-462.
    • (2008) Blood , vol.111 , pp. 453-462
    • Zeiser, R.1    Leveson-Gower, D.B.2    Zambricki, E.A.3
  • 57
    • 44449100271 scopus 로고    scopus 로고
    • Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin
    • Basu S, Golovina T, Mikheeva T, et al. Cutting edge: Foxp3-mediated induction of pim 2 allows human T regulatory cells to preferentially expand in rapamycin. J Immunol 2008; 180:5794-5798.
    • (2008) J Immunol , vol.180 , pp. 5794-5798
    • Basu, S.1    Golovina, T.2    Mikheeva, T.3
  • 58
    • 67749091321 scopus 로고    scopus 로고
    • Infectious tolerance via the consumption of essential amino acids and mTOR signaling
    • Cobbold SP, Adams E, Farquhar CA, et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc Natl Acad Sci U S A 2009; 106:12055-12060.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 12055-12060
    • Cobbold, S.P.1    Adams, E.2    Farquhar, C.A.3
  • 59
    • 84867216518 scopus 로고    scopus 로고
    • Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability
    • Lee JH, Lydon JP, Kim CH. Progesterone suppresses the mTOR pathway and promotes generation of induced regulatory T cells with increased stability. Eur J Immunol 2012; 42:2683-2696.
    • (2012) Eur J Immunol , vol.42 , pp. 2683-2696
    • Lee, J.H.1    Lydon, J.P.2    Kim, C.H.3
  • 60
    • 42449110816 scopus 로고    scopus 로고
    • Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking
    • Sinclair LV, Finlay D, Feijoo C, et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol 2008; 9:513-521.
    • (2008) Nat Immunol , vol.9 , pp. 513-521
    • Sinclair, L.V.1    Finlay, D.2    Feijoo, C.3
  • 61
    • 84856183120 scopus 로고    scopus 로고
    • Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development
    • van der Windt GJ, Everts B, Chang CH, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 2012; 36:68-78.
    • (2012) Immunity , vol.36 , pp. 68-78
    • Van Der Windt, G.J.1    Everts, B.2    Chang, C.H.3
  • 62
    • 75749119313 scopus 로고    scopus 로고
    • Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration
    • Finlay D, Cantrell D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann N Y Acad Sci 2010; 1183:149-157.
    • (2010) Ann N y Acad Sci , vol.1183 , pp. 149-157
    • Finlay, D.1    Cantrell, D.2
  • 63
    • 67650074206 scopus 로고    scopus 로고
    • MTOR regulates memory CD8 T-cell differentiation
    • Araki K, Turner AP, Shaffer VO, et al. mTOR regulates memory CD8 T-cell differentiation. Nature 2009; 460:108-112.
    • (2009) Nature , vol.460 , pp. 108-112
    • Araki, K.1    Turner, A.P.2    Shaffer, V.O.3
  • 64
    • 74649085700 scopus 로고    scopus 로고
    • The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin
    • Rao RR, Li Q, Odunsi K, Shrikant PA. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 2010; 32:67-78.
    • (2010) Immunity , vol.32 , pp. 67-78
    • Rao, R.R.1    Li, Q.2    Odunsi, K.3    Shrikant, P.A.4
  • 65
    • 84892941233 scopus 로고    scopus 로고
    • Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity
    • Berezhnoy A, Castro I, Levay A, et al. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest 2014; 124:188-197.
    • (2014) J Clin Invest , vol.124 , pp. 188-197
    • Berezhnoy, A.1    Castro, I.2    Levay, A.3
  • 66
    • 79956142389 scopus 로고    scopus 로고
    • Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate longlasting memory cells
    • He S, Kato K, Jiang J, et al. Characterization of the metabolic phenotype of rapamycin-treated CD8+ T cells with augmented ability to generate longlasting memory cells. PLoS One 2011; 6:e20107.
    • (2011) PLoS One , vol.6
    • He, S.1    Kato, K.2    Jiang, J.3
  • 67
    • 78049287331 scopus 로고    scopus 로고
    • Cobbold SP. MTOR signalling and metabolic regulation of T cell differentiation
    • Peter C, Waldmann H, Cobbold SP. mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol 2010; 22:655-661.
    • (2010) Curr Opin Immunol , vol.22 , pp. 655-661
    • Peter, C.1    Waldmann, H.2
  • 68
    • 84874995247 scopus 로고    scopus 로고
    • Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1
    • Ben-Sahra I, Howell JJ, Asara JM, Manning BD. Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 2013; 339:1323-1328.
    • (2013) Science , vol.339 , pp. 1323-1328
    • Ben-Sahra, I.1    Howell, J.J.2    Asara, J.M.3    Manning, B.D.4
  • 69
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Düvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171-183.
    • (2010) Mol Cell , vol.39 , pp. 171-183
    • Düvel, K.1    Yecies, J.L.2    Menon, S.3
  • 70
    • 84876684375 scopus 로고    scopus 로고
    • Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity
    • Kidani Y, Elsaesser H, Hock MB, et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat Immunol 2013; 14:489-499.
    • (2013) Nat Immunol , vol.14 , pp. 489-499
    • Kidani, Y.1    Elsaesser, H.2    Hock, M.B.3
  • 71
    • 50049116472 scopus 로고    scopus 로고
    • SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
    • Porstmann T, Santos CR, Griffiths B, et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8:224-236.
    • (2008) Cell Metab , vol.8 , pp. 224-236
    • Porstmann, T.1    Santos, C.R.2    Griffiths, B.3
  • 72
    • 79960960007 scopus 로고    scopus 로고
    • Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways
    • Yecies JL, Zhang HH, Menon S, et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab 2011; 14:21-32.
    • (2011) Cell Metab , vol.14 , pp. 21-32
    • Yecies, J.L.1    Zhang, H.H.2    Menon, S.3
  • 73
    • 84885670616 scopus 로고    scopus 로고
    • Fueling immunity: Insights into metabolism and lymphocyte function
    • Pearce EL, Poffenberger MC, Chang CH, Jones RG. Fueling immunity: insights into metabolism and lymphocyte function. Science 2013; 342:1242454.
    • (2013) Science , vol.342 , pp. 1242454
    • Pearce, E.L.1    Poffenberger, M.C.2    Chang, C.H.3    Jones, R.G.4
  • 74
    • 12444279265 scopus 로고
    • On the origin of cancer cells
    • Warburg O. On the origin of cancer cells. Science 1956; 123:309-314.
    • (1956) Science , vol.123 , pp. 309-314
    • Warburg, O.1
  • 75
    • 27744519400 scopus 로고    scopus 로고
    • Fuel feeds function: Energy metabolism and the T-cell response
    • Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 2005; 5:844-852.
    • (2005) Nat Rev Immunol , vol.5 , pp. 844-852
    • Fox, C.J.1    Hammerman, P.S.2    Thompson, C.B.3
  • 76
    • 84255199079 scopus 로고    scopus 로고
    • Thetranscription factor Myccontrols metabolic reprogramming upon T lymphocyte activation
    • Wang R, Dillon CP, Shi LZ, et al. Thetranscription factor Myccontrols metabolic reprogramming upon T lymphocyte activation. Immunity 2011; 35:871-882.
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1    Dillon, C.P.2    Shi, L.Z.3
  • 77
    • 34547580590 scopus 로고    scopus 로고
    • HIF and c-Myc: Sibling rivals for control of cancer cell metabolism and proliferation
    • Gordan JD, Thompson CB, Simon MC. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 2007; 12:108-113.
    • (2007) Cancer Cell , vol.12 , pp. 108-113
    • Gordan, J.D.1    Thompson, C.B.2    Simon, M.C.3
  • 78
    • 78649348967 scopus 로고    scopus 로고
    • Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress
    • Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40:310-322.
    • (2010) Mol Cell , vol.40 , pp. 310-322
    • Sengupta, S.1    Peterson, T.R.2    Sabatini, D.M.3
  • 79
    • 15744386891 scopus 로고    scopus 로고
    • Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK-and ERK-dependent pathway
    • Shi Y, Sharma A, Wu H, et al. Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK-and ERK-dependent pathway. J Biol Chem 2005; 280:10964-10973.
    • (2005) J Biol Chem , vol.280 , pp. 10964-10973
    • Shi, Y.1    Sharma, A.2    Wu, H.3
  • 81
    • 77955475969 scopus 로고    scopus 로고
    • Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
    • Carr EL, Kelman A, Wu GS, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol 2010; 185:1037-1044.
    • (2010) J Immunol , vol.185 , pp. 1037-1044
    • Carr, E.L.1    Kelman, A.2    Wu, G.S.3
  • 82
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A, Fendt SM, Li C, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 2013; 153:840-854.
    • (2013) Cell , vol.153 , pp. 840-854
    • Csibi, A.1    Fendt, S.M.2    Li, C.3
  • 83
    • 79960369458 scopus 로고    scopus 로고
    • HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells
    • Shi LZ, Wang R, Huang G, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 2011; 208:1367-1376.
    • (2011) J Exp Med , vol.208 , pp. 1367-1376
    • Shi, L.Z.1    Wang, R.2    Huang, G.3
  • 84
    • 80052277906 scopus 로고    scopus 로고
    • Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1
    • Dang EV, Barbi J, Yang HY, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011; 146:772-784.
    • (2011) Cell , vol.146 , pp. 772-784
    • Dang, E.V.1    Barbi, J.2    Yang, H.Y.3
  • 85
    • 77955483125 scopus 로고    scopus 로고
    • Activation of a metabolic gene regulatory network downstream of mTOR complex 1
    • Düvel K, Yecies JL, Menon S, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39:171-183.
    • (2010) Mol Cell , vol.39 , pp. 171-183
    • Düvel, K.1    Yecies, J.L.2    Menon, S.3
  • 86
    • 79953172571 scopus 로고    scopus 로고
    • Cutting edge: Distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets
    • Michalek RD, Gerriets VA, Jacobs SR, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 2011; 186:3299-3303.
    • (2011) J Immunol , vol.186 , pp. 3299-3303
    • Michalek, R.D.1    Gerriets, V.A.2    Jacobs, S.R.3
  • 87
    • 0036069699 scopus 로고    scopus 로고
    • The CD28 signaling pathway regulates glucose metabolism
    • Frauwirth KA, Riley JL, Harris MH, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002; 16:769-777.
    • (2002) Immunity , vol.16 , pp. 769-777
    • Frauwirth, K.A.1    Riley, J.L.2    Harris, M.H.3
  • 88
    • 84885446960 scopus 로고    scopus 로고
    • LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells
    • Hayashi K, Jutabha P, Endou H, et al. LAT1 is a critical transporter of essential amino acids for immune reactions in activated human T cells. J Immunol 2013; 191:4080-4085.
    • (2013) J Immunol , vol.191 , pp. 4080-4085
    • Hayashi, K.1    Jutabha, P.2    Endou, H.3
  • 89
    • 44449165597 scopus 로고    scopus 로고
    • Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways
    • Jacobs SR, Herman CE, Maciver NJ, et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J Immunol 2008; 180:4476-4486.
    • (2008) J Immunol , vol.180 , pp. 4476-4486
    • Jacobs, S.R.1    Herman, C.E.2    Maciver, N.J.3
  • 90
    • 45849105156 scopus 로고    scopus 로고
    • The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
    • Sancak Y, Peterson TR, Shaul YD, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008; 320:1496-1501.
    • (2008) Science , vol.320 , pp. 1496-1501
    • Sancak, Y.1    Peterson, T.R.2    Shaul, Y.D.3
  • 91
    • 0037155888 scopus 로고    scopus 로고
    • Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycindependent manner
    • Christie GR, Hajduch E, Hundal HS, et al. Intracellular sensing of amino acids in Xenopus laevis oocytes stimulates p70 S6 kinase in a target of rapamycindependent manner. J Biol Chem 2002; 277:9952-9957.
    • (2002) J Biol Chem , vol.277 , pp. 9952-9957
    • Christie, G.R.1    Hajduch, E.2    Hundal, H.S.3
  • 92
    • 84876514626 scopus 로고    scopus 로고
    • Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation
    • Sinclair LV, Rolf J, Emslie E, et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 2013; 14:500-508.
    • (2013) Nat Immunol , vol.14 , pp. 500-508
    • Sinclair, L.V.1    Rolf, J.2    Emslie, E.3
  • 93
    • 59049087460 scopus 로고    scopus 로고
    • Bidirectional transport of amino acids regulates mTOR and autophagy
    • Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136:521-534.
    • (2009) Cell , vol.136 , pp. 521-534
    • Nicklin, P.1    Bergman, P.2    Zhang, B.3
  • 94
    • 0037423752 scopus 로고    scopus 로고
    • Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells
    • Hidayat S, Yoshino K, Tokunaga C, et al. Inhibition of amino acid-mTOR signaling by a leucine derivative induces G1 arrest in Jurkat cells. Biochem Biophys Res Commun 2003; 301:417-423.
    • (2003) Biochem Biophys Res Commun , vol.301 , pp. 417-423
    • Hidayat, S.1    Yoshino, K.2    Tokunaga, C.3
  • 95
    • 21244437079 scopus 로고    scopus 로고
    • 5-aminoimidazole-4-carboxamide ribonucleoside: A novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis
    • Nath N, Giri S, Prasad R, et al. 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J Immunol 2005; 175:566-574.
    • (2005) J Immunol , vol.175 , pp. 566-574
    • Nath, N.1    Giri, S.2    Prasad, R.3
  • 96
    • 33745823168 scopus 로고    scopus 로고
    • Regulation of the energy sensor AMPactivated protein kinase by antigen receptor and Ca2+ in T lymphocytes
    • Támas P, Hawley SA, Clarke RG, et al. Regulation of the energy sensor AMPactivated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J Exp Med 2006; 203:1665-1670.
    • (2006) J Exp Med , vol.203 , pp. 1665-1670
    • Támas, P.1    Hawley, S.A.2    Clarke, R.G.3
  • 97
    • 44849141880 scopus 로고    scopus 로고
    • AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function
    • Mayer A, Denanglaire S, Viollet B, et al.AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur J Immunol 2008; 38:948-956.
    • (2008) Eur J Immunol , vol.38 , pp. 948-956
    • Mayer, A.1    Denanglaire, S.2    Viollet, B.3
  • 98
    • 84876454059 scopus 로고    scopus 로고
    • AMPKa1: A glucose sensor that controls CD8 T-cell memory
    • Rolf J, Zarrouk M, Finlay DK, et al. AMPKa1: a glucose sensor that controls CD8 T-cell memory. Eur J Immunol 2013; 43:889-896.
    • (2013) Eur J Immunol , vol.43 , pp. 889-896
    • Rolf, J.1    Zarrouk, M.2    Finlay, D.K.3
  • 99
    • 10044276783 scopus 로고    scopus 로고
    • Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex
    • Brugarolas J, Lei K, Hurley RL, et al. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 2004; 18:2893-2904.
    • (2004) Genes Dev , vol.18 , pp. 2893-2904
    • Brugarolas, J.1    Lei, K.2    Hurley, R.L.3
  • 100
    • 0036118562 scopus 로고    scopus 로고
    • Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis
    • Shoshani T, Faerman A, Mett I, et al. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 2002; 22:2283-2293.
    • (2002) Mol Cell Biol , vol.22 , pp. 2283-2293
    • Shoshani, T.1    Faerman, A.2    Mett, I.3
  • 101
    • 25444454359 scopus 로고    scopus 로고
    • Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors
    • Sitkovsky M, Lukashev D. Regulation of immune cells by local-tissue oxygen tension: HIF1 alpha and adenosine receptors. Nat Rev Immunol 2005; 5:712-721.
    • (2005) Nat Rev Immunol , vol.5 , pp. 712-721
    • Sitkovsky, M.1    Lukashev, D.2
  • 102
    • 10844266734 scopus 로고    scopus 로고
    • Transplantation 50 years later-progress, challenges, and promises
    • Sayegh MH, Carpenter CB. Transplantation 50 years later-progress, challenges, and promises. N Engl J Med 2004; 351:2761-2766.
    • (2004) N Engl J Med , vol.351 , pp. 2761-2766
    • Sayegh, M.H.1    Carpenter, C.B.2
  • 103
    • 84897105601 scopus 로고    scopus 로고
    • Obesity metabolic syndrome and diabetes mellitus after renal transplantation: Prevention and treatment
    • Wissing KM, Pipeleers L.Obesity, metabolic syndrome and diabetes mellitus after renal transplantation: prevention and treatment. Transplant Rev (Orlando) 2014; 28:37-46.
    • (2014) Transplant Rev (Orlando) , vol.28 , pp. 37-46
    • Wissing, K.M.1    Pipeleers, L.2
  • 104
    • 0035370434 scopus 로고    scopus 로고
    • Steroids and risk of upper gastrointestinal complications
    • Hernández-Díaz S, Rodríguez LA. Steroids and risk of upper gastrointestinal complications. Am J Epidemiol 2001; 153:1089-1093.
    • (2001) Am J Epidemiol , vol.153 , pp. 1089-1093
    • Hernández-Díaz, S.1    Rodríguez, L.A.2
  • 105
    • 84883451866 scopus 로고    scopus 로고
    • Association between calcineurin inhibitor treatment and peripheral nerve dysfunction in renal transplant recipients
    • Arnold R, Pussell BA, Pianta TJ, et al. Association between calcineurin inhibitor treatment and peripheral nerve dysfunction in renal transplant recipients. Am J Transplant 2013; 13:2426-2432.
    • (2013) Am J Transplant , vol.13 , pp. 2426-2432
    • Arnold, R.1    Pussell, B.A.2    Pianta, T.J.3
  • 106
    • 79953250784 scopus 로고    scopus 로고
    • Chronic calcineurin inhibitor nephrotoxicity-lest we forget
    • Chapman JR. Chronic calcineurin inhibitor nephrotoxicity-lest we forget. Am J Transplant 2011; 11:693-697.
    • (2011) Am J Transplant , vol.11 , pp. 693-697
    • Chapman, J.R.1
  • 107
    • 34250156673 scopus 로고    scopus 로고
    • Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells
    • Gao W, Lu Y, El Essawy B, et al. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am J Transplant 2007; 7:1722-1732.
    • (2007) Am J Transplant , vol.7 , pp. 1722-1732
    • Gao, W.1    Lu, Y.2    El Essawy, B.3
  • 108
    • 71849118976 scopus 로고    scopus 로고
    • Allogeneic hematopoietic stem-cell transplantation for sickle cell disease
    • Hsieh MM, Kang EM, Fitzhugh CD, et al. Allogeneic hematopoietic stem-cell transplantation for sickle cell disease. N Engl J Med 2009; 361:2309-2317.
    • (2009) N Engl J Med , vol.361 , pp. 2309-2317
    • Hsieh, M.M.1    Kang, E.M.2    Fitzhugh, C.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.