메뉴 건너뛰기




Volumn 52, Issue 29, 2013, Pages 9897-9907

Distributed statistical process monitoring based on four-subspace construction and Bayesian inference

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORKS; FAULT DETECTION; INFERENCE ENGINES; MULTIVARIANT ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; STATISTICAL PROCESS CONTROL;

EID: 84880858673     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie400544q     Document Type: Article
Times cited : (79)

References (40)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical process monitoring: Basics and beyond J. Chemom. 2003, 17, 480
    • (2003) J. Chemom. , vol.17 , pp. 480
    • Qin, S.J.1
  • 3
    • 0029267381 scopus 로고
    • Statistical process control of multivariate processes
    • MacGregor, J.; Kourti, T. Statistical process control of multivariate processes Control Eng. Pract. 1995, 3, 403
    • (1995) Control Eng. Pract. , vol.3 , pp. 403
    • MacGregor, J.1    Kourti, T.2
  • 4
    • 0035882158 scopus 로고    scopus 로고
    • A new multivariate statistical process monitoring method using principal component analysis
    • Kano, M.; Nagao, K.; Hasebe, S.; Hashimoto, I.; Ohno, H. A new multivariate statistical process monitoring method using principal component analysis Comput. Chem. Eng. 2001, 25, 1103
    • (2001) Comput. Chem. Eng. , vol.25 , pp. 1103
    • Kano, M.1    Nagao, K.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 5
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processess
    • Wang, X.; Kruger, U.; Lennox, B. Recursive partial least squares algorithms for monitoring complex industrial processess Control Eng. Pract. 2003, 11, 613
    • (2003) Control Eng. Pract. , vol.11 , pp. 613
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 6
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • Kruger, U.; Dimitriadis, G. Diagnosis of process faults in chemical systems using a local partial least squares approach AIChE J. 2008, 54, 2581
    • (2008) AIChE J. , vol.54 , pp. 2581
    • Kruger, U.1    Dimitriadis, G.2
  • 7
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Ge, Z.; Zhang, M.; Song, Z. Nonlinear process monitoring based on linear subspace and Bayesian inference J. Process Control 2010, 20, 676
    • (2010) J. Process Control , vol.20 , pp. 676
    • Ge, Z.1    Zhang, M.2    Song, Z.3
  • 8
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee, J. M.; Yoo, C. K.; Lee, I. B. Statistical process monitoring with independent component analysis J. Process Control 2004, 14, 467
    • (2004) J. Process Control , vol.14 , pp. 467
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 9
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee, J. M.; Yoo, C. K.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 10
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • Lee, J. M.; Qin, S. J.; Lee, I. B. Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 2007, 85, 526
    • (2007) Can. J. Chem. Eng. , vol.85 , pp. 526
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 11
    • 61749100891 scopus 로고    scopus 로고
    • Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis
    • Shao, J. D.; Rong, G.; Lee, J. M. Generalized orthogonal locality preserving projections for nonlinear fault detection and diagnosis Chemom. Intel. Lab. Syst. 2009, 96, 75
    • (2009) Chemom. Intel. Lab. Syst. , vol.96 , pp. 75
    • Shao, J.D.1    Rong, G.2    Lee, J.M.3
  • 12
    • 2442495227 scopus 로고    scopus 로고
    • Fault detection of batch processes using multiway kernel principal component analysis
    • Lee, J. M.; Yoo, C. K.; Lee, I. B. Fault detection of batch processes using multiway kernel principal component analysis Chem. Eng. Sci. 2004, 28, 1837
    • (2004) Chem. Eng. Sci. , vol.28 , pp. 1837
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 13
    • 80052801546 scopus 로고    scopus 로고
    • On-line batch process monitoring using hierarchical kernel partial least squares
    • Zhang, Y.; Hu, Z. On-line batch process monitoring using hierarchical kernel partial least squares Chem. Eng. Res. Des. 2011, 89, 2078
    • (2011) Chem. Eng. Res. Des. , vol.89 , pp. 2078
    • Zhang, Y.1    Hu, Z.2
  • 14
    • 2942558590 scopus 로고    scopus 로고
    • A new data-based methodology for nonlinear process modeling
    • Cheng, C.; Chiu, M. S. A new data-based methodology for nonlinear process modeling Chem. Eng. Sci. 2004, 59, 2801
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 2801
    • Cheng, C.1    Chiu, M.S.2
  • 15
    • 78650524009 scopus 로고    scopus 로고
    • A comparative study of just-in-time-learning based methods for online soft sensor modeling
    • Ge, Z.; Song, Z. A comparative study of just-in-time-learning based methods for online soft sensor modeling Chemom. Intel. Lab. Syst. 2010, 104, 306
    • (2010) Chemom. Intel. Lab. Syst. , vol.104 , pp. 306
    • Ge, Z.1    Song, Z.2
  • 16
    • 0038067735 scopus 로고    scopus 로고
    • Multi-linear model-based fault detection during process transitions
    • Bhagwat, A.; Srinivasan, R.; Krishnaswamy, P. R. Multi-linear model-based fault detection during process transitions Chem. Eng. Sci. 2003, 58, 1649
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 1649
    • Bhagwat, A.1    Srinivasan, R.2    Krishnaswamy, P.R.3
  • 17
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta, J.; MacGregor, J.; Marlin, T. Multivariate statistical monitoring of process operating performance Can. J. Chem. Eng. 1991, 69, 35
    • (1991) Can. J. Chem. Eng. , vol.69 , pp. 35
    • Kresta, J.1    MacGregor, J.2    Marlin, T.3
  • 18
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho, J.H.; Lee, J. M.; Choi, S. W.; Lee, D.; Lee, I. B. Fault identification for process monitoring using kernel principal component analysis Chem. Eng. Sci. 2005, 60, 279-288
    • (2005) Chem. Eng. Sci. , vol.60 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3    Lee, D.4    Lee, I.B.5
  • 19
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multiblock analysis with application to decentralized process monitoring
    • Qin, S. J.; Valle, S.; Piovoso, M. J. On unifying multiblock analysis with application to decentralized process monitoring J. Chemom. 2001, 15, 715
    • (2001) J. Chemom. , vol.15 , pp. 715
    • Qin, S.J.1    Valle, S.2    Piovoso, M.J.3
  • 20
    • 33646731122 scopus 로고    scopus 로고
    • Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis
    • Cherry, G. A.; Qin, S. J. Multiblock principal component analysis based on a combined index for semiconductor fault detection and diagnosis IEEE Trans. Semicond. Manuf. 2006, 19, 159
    • (2006) IEEE Trans. Semicond. Manuf. , vol.19 , pp. 159
    • Cherry, G.A.1    Qin, S.J.2
  • 21
    • 76849100172 scopus 로고    scopus 로고
    • Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares
    • Zhang, Y.; Zhou, H.; Qin, S. J.; Chai, T. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares IEEE Trans. Ind. Inf. 2010, 6, 3
    • (2010) IEEE Trans. Ind. Inf. , vol.6 , pp. 3
    • Zhang, Y.1    Zhou, H.2    Qin, S.J.3    Chai, T.4
  • 22
    • 84862791006 scopus 로고    scopus 로고
    • Decentralized fault detection and diagnosis via sparse PCA-based decomposition and maximum entropy decision fusion
    • Grbovic, M.; Li, W.; Xu, P.; Usadi, A. K.; Song, L.; Vucetic, S. Decentralized fault detection and diagnosis via sparse PCA-based decomposition and maximum entropy decision fusion J. Process Control 2012, 22, 738
    • (2012) J. Process Control , vol.22 , pp. 738
    • Grbovic, M.1    Li, W.2    Xu, P.3    Usadi, A.K.4    Song, L.5    Vucetic, S.6
  • 23
    • 84860444038 scopus 로고    scopus 로고
    • Decentralized fault diagnosis using multiblock kernel independent component analysis
    • Zhang, Y.; Ma, C. Decentralized fault diagnosis using multiblock kernel independent component analysis Chem. Eng. Res. Des. 2012, 90, 667
    • (2012) Chem. Eng. Res. Des. , vol.90 , pp. 667
    • Zhang, Y.1    Ma, C.2
  • 24
    • 79958703777 scopus 로고    scopus 로고
    • Localized fisher discriminant analysis-based complex chemical process monitoring
    • Yu, J. Localized fisher discriminant analysis-based complex chemical process monitoring AIChE J. 2011, 57, 1817
    • (2011) AIChE J. , vol.57 , pp. 1817
    • Yu, J.1
  • 25
    • 79959985541 scopus 로고    scopus 로고
    • Global-local structure analysis model and its application for fault detection and identification
    • Zhang, M.; Ge, Z.; Song, Z.; Fu, R. Global-local structure analysis model and its application for fault detection and identification Ind. Eng. Chem. Res. 2011, 50, 6837
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 6837
    • Zhang, M.1    Ge, Z.2    Song, Z.3    Fu, R.4
  • 26
    • 84864297252 scopus 로고    scopus 로고
    • Local and global principal component analysis for process monitoring
    • Yu, J. Local and global principal component analysis for process monitoring J. Process Control. 2012, 22, 1358
    • (2012) J. Process Control. , vol.22 , pp. 1358
    • Yu, J.1
  • 27
    • 67349104900 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes with application of hierarchical neural networks
    • Rusinov, L. A.; Rudakova, I. V.; Remizova, O. A.; Kurkina, V. V. Fault diagnosis in chemical processes with application of hierarchical neural networks Chemom. Intel. Lab. Syst. 2009, 97, 98
    • (2009) Chemom. Intel. Lab. Syst. , vol.97 , pp. 98
    • Rusinov, L.A.1    Rudakova, I.V.2    Remizova, O.A.3    Kurkina, V.V.4
  • 28
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA, and SVM
    • Zhang, Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA, and SVM Chem. Eng. Sci. 2009, 64, 801
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801
    • Zhang, Y.1
  • 31
    • 0035381566 scopus 로고    scopus 로고
    • Improved PCA with application to process monitoring and fault diagnosis
    • Wang, H.; Song, Z.; Li, P. Improved PCA with application to process monitoring and fault diagnosis J. Chem. Ind. Eng. (China) 2001, 52, 471
    • (2001) J. Chem. Ind. Eng. (China) , vol.52 , pp. 471
    • Wang, H.1    Song, Z.2    Li, P.3
  • 32
    • 0030194022 scopus 로고    scopus 로고
    • Dynamics and control of fluidized catalytic crackers. 3. Designing the control system: Choice of manipulated and measured variables for partial control
    • Arbel, A.; Rinard, I. H.; Shinnar, R. Dynamics and control of fluidized catalytic crackers. 3. Designing the control system: Choice of manipulated and measured variables for partial control Ind. Eng. Chem. Res. 1996, 35, 2215
    • (1996) Ind. Eng. Chem. Res. , vol.35 , pp. 2215
    • Arbel, A.1    Rinard, I.H.2    Shinnar, R.3
  • 33
    • 0345251968 scopus 로고    scopus 로고
    • Dominant variables for partial control. 1. A thermodynamic method for their identification
    • Tyréus, B. D. Dominant variables for partial control. 1. A thermodynamic method for their identification Ind. Eng. Chem. Res. 1999, 38, 1432
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 1432
    • Tyréus, B.D.1
  • 34
    • 38549106577 scopus 로고    scopus 로고
    • State-specific key variables for monitoring multi-state processes
    • Srinivasan, R.; Qian, M. State-specific key variables for monitoring multi-state processes Chem. Eng. Res. Des. 2007, 85, 1630
    • (2007) Chem. Eng. Res. Des. , vol.85 , pp. 1630
    • Srinivasan, R.1    Qian, M.2
  • 35
    • 78651434307 scopus 로고    scopus 로고
    • Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods
    • Ghosh, K.; Ng, Y. S.; Srinivasan, R. Evaluation of decision fusion strategies for effective collaboration among heterogeneous fault diagnostic methods Comput. Chem. Eng. 2011, 35, 342
    • (2011) Comput. Chem. Eng. , vol.35 , pp. 342
    • Ghosh, K.1    Ng, Y.S.2    Srinivasan, R.3
  • 36
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245
    • Downs, J.J.1    Vogel, E.F.2
  • 37
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhal, A.; Seborg, D. E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process J. Process Control 2006, 16, 601
    • (2006) J. Process Control , vol.16 , pp. 601
    • Singhal, A.1    Seborg, D.E.2
  • 38
    • 0034621334 scopus 로고    scopus 로고
    • Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis
    • Russell, E. L.; Chiang, L. H.; Braatz, R. D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis Chemom. Intel. Lab. Syst. 2000, 51, 81
    • (2000) Chemom. Intel. Lab. Syst. , vol.51 , pp. 81
    • Russell, E.L.1    Chiang, L.H.2    Braatz, R.D.3
  • 39
    • 79959245830 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring based on statistics pattern analysis
    • Wang, J.; He, Q. P. Multivariate statistical process monitoring based on statistics pattern analysis Ind. Eng. Chem. Res. 2010, 49, 7858
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 7858
    • Wang, J.1    He, Q.P.2
  • 40
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman, P. R.; Georgakist, C. Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 1995, 19, 321
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321
    • Lyman, P.R.1    Georgakist, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.