메뉴 건너뛰기




Volumn 52, Issue 6, 2013, Pages 2389-2402

Fault detection and identification based on the neighborhood standardized local outlier factor method

Author keywords

[No Author keywords available]

Indexed keywords

COMPLEX CHEMICALS; COMPLEX PROCESSES; DIFFERENT OPERATING CONDITIONS; EUCLIDEAN DISTANCE; FAULT DETECTION AND IDENTIFICATION; FAULT IDENTIFICATIONS; GAUSSIANS; GLOBAL MODELS; LOCAL NEIGHBORHOODS; LOCAL OUTLIER FACTOR; MONITORING INDEX; MONITORING MODELS; MULTI-MODALITY; MULTI-MODE PROCESS; MULTIMODES; MULTIVARIATE STATISTICAL PROCESS MONITORING; NON-GAUSSIAN DISTRIBUTION; NUMERICAL EXAMPLE; OPERATING DATA; OPERATING MODES; PROCESS DATA; PROCESS KNOWLEDGE; TENNESSEE EASTMAN PROCESS;

EID: 84873616584     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie302042c     Document Type: Article
Times cited : (92)

References (48)
  • 1
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 2
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee, J. M.; Yoo, C. K.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223-234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 3
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong, D.; McAvoy, T. J. Nonlinear principal component analysis-based on principal curves and neural networks Comput. Chem. Eng. 1996, 20, 65-78
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 4
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • Lee, J. M.; Qin, S. J.; Lee, I. B. Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 2007, 85, 526-536
    • (2007) Can. J. Chem. Eng. , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 5
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 1995, 30, 179-196
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 6
    • 70350318936 scopus 로고    scopus 로고
    • Nonlinear Batch Process Monitoring Using Phase-Based Kernel-Independent Component Analysis-Principal Component Analysis (KICA-PCA)
    • Zhao, C. H.; Gao, F. R.; Wang, F. L. Nonlinear Batch Process Monitoring Using Phase-Based Kernel-Independent Component Analysis-Principal Component Analysis (KICA-PCA) Ind. Eng. Chem. Res. 2009, 48, 9163-9174
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 9163-9174
    • Zhao, C.H.1    Gao, F.R.2    Wang, F.L.3
  • 7
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge, Z. Q.; Song, Z. H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 2007, 46, 2054-2063
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 9
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu, J.; Qin, S. J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 2008, 54, 1811-1829
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 10
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian Regularization method of PPCA for multimode process monitoring
    • Ge, Z. Q.; Song, Z. H. Mixture Bayesian Regularization method of PPCA for multimode process monitoring AIChE J. 2010, 56, 2838-2849
    • (2010) AIChE J. , vol.56 , pp. 2838-2849
    • Ge, Z.Q.1    Song, Z.H.2
  • 11
  • 12
    • 84868210616 scopus 로고    scopus 로고
    • A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
    • Ma, H. H.; Hu, Y.; Shi, H. B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes Chemom. Intell. Lab. Syst. 2012, 118, 287-300
    • (2012) Chemom. Intell. Lab. Syst. , vol.118 , pp. 287-300
    • Ma, H.H.1    Hu, Y.2    Shi, H.B.3
  • 13
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge, Z. Q.; Song, Z. H. Multimode process monitoring based on Bayesian method J. Chemom. 2009, 23, 636-650
    • (2009) J. Chemom. , vol.23 , pp. 636-650
    • Ge, Z.Q.1    Song, Z.H.2
  • 14
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao, S. J.; Zhang, J.; Xu, Y. M. Performance monitoring of processes with multiple operating modes through multiple PLS models J. Process Control 2006, 16, 763-772
    • (2006) J. Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 15
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operation modes through multiple principle component analysis models
    • Zhao, S. J.; Zhang, J.; Xu, Y. M. Monitoring of processes with multiple operation modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025-7035
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 16
    • 77953535805 scopus 로고    scopus 로고
    • Multi-model based process condition monitoring of offshore oil and gas production process
    • Natarajan, S.; Srinivasan, R. Multi-model based process condition monitoring of offshore oil and gas production process Chem. Eng. Res. Des. 2010, 88, 572-591
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 572-591
    • Natarajan, S.1    Srinivasan, R.2
  • 17
    • 80051914224 scopus 로고    scopus 로고
    • Two-dimensional Bayesian monitoring method for nonlinear multimode processes
    • Ge, Z. Q.; Gao, F. R.; Song, Z. H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes Chem. Eng. Sci. 2011, 66, 5173-5183
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 5173-5183
    • Ge, Z.Q.1    Gao, F.R.2    Song, Z.H.3
  • 18
  • 19
    • 84857790824 scopus 로고    scopus 로고
    • Fault detection and isolation in transient states using principal component analysis
    • Garcia-Alvarez, D.; Fuente, M. J.; Sainz, G. I. Fault detection and isolation in transient states using principal component analysis J. Process Control 2012, 22, 551-563
    • (2012) J. Process Control , vol.22 , pp. 551-563
    • Garcia-Alvarez, D.1    Fuente, M.J.2    Sainz, G.I.3
  • 20
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu, J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 2011, 68, 506-519
    • (2011) Chem. Eng. Sci. , vol.68 , pp. 506-519
    • Yu, J.1
  • 21
    • 84862799924 scopus 로고    scopus 로고
    • A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
    • Yu, J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis J. Process Control 2012, 22, 778-788
    • (2012) J. Process Control , vol.22 , pp. 778-788
    • Yu, J.1
  • 22
    • 84859911625 scopus 로고    scopus 로고
    • Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models
    • Xie, X.; Shi, H. B. Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models Ind. Eng. Chem. Res. 2012, 51, 5497-5505
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5497-5505
    • Xie, X.1    Shi, H.B.2
  • 23
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • Yu, J.; Qin, S. J. Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 2009, 48, 8585-8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2
  • 24
    • 75149115338 scopus 로고    scopus 로고
    • Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
    • Yu, J. B. Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring J. Process Control 2010, 20, 344-359
    • (2010) J. Process Control , vol.20 , pp. 344-359
    • Yu, J.B.1
  • 25
    • 84859903438 scopus 로고    scopus 로고
    • Hidden Markov Model Based Adaptive Independent Component Analysis Approach for Complex Chemical Process Monitoring and Fault Detection
    • Rashid, M. M.; Yu, J. Hidden Markov Model Based Adaptive Independent Component Analysis Approach for Complex Chemical Process Monitoring and Fault Detection Ind. Eng. Chem. Res. 2012, 51, 5506-5514
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 5506-5514
    • Rashid, M.M.1    Yu, J.2
  • 26
    • 0038148305 scopus 로고    scopus 로고
    • Probabilistic model for sensor fault detection and identification
    • Mehranbod, N.; Soroush, M.; Piovoso, M.; Ogunnaike, B. A. Probabilistic model for sensor fault detection and identification AIChE J. 2004, 49, 1787-1802
    • (2004) AIChE J. , vol.49 , pp. 1787-1802
    • Mehranbod, N.1    Soroush, M.2    Piovoso, M.3    Ogunnaike, B.A.4
  • 27
  • 28
    • 79953699930 scopus 로고    scopus 로고
    • A distribution-free method for process monitoring
    • Ge, Z. Q.; Song, Z. H. A distribution-free method for process monitoring Expert Syst. Appl. 2011, 38, 9821-9829
    • (2011) Expert Syst. Appl. , vol.38 , pp. 9821-9829
    • Ge, Z.Q.1    Song, Z.H.2
  • 30
    • 71749107907 scopus 로고    scopus 로고
    • A comparison of outlier detection algorithms for ITS data
    • Chen, S. Y.; Wang, W.; van Zuylen, H. A comparison of outlier detection algorithms for ITS data Expert Syst. Appl. 2010, 37, 1169-1178
    • (2010) Expert Syst. Appl. , vol.37 , pp. 1169-1178
    • Chen, S.Y.1    Wang, W.2    Van Zuylen, H.3
  • 31
    • 34347333289 scopus 로고    scopus 로고
    • A local-density based spatial clustering algorithm with noise
    • Duan, L.; Xu, L.; Guo, F.; Lee, J.; Yan, B. A local-density based spatial clustering algorithm with noise Inf. Syst. 2007, 32, 978-986
    • (2007) Inf. Syst. , vol.32 , pp. 978-986
    • Duan, L.1    Xu, L.2    Guo, F.3    Lee, J.4    Yan, B.5
  • 32
    • 79957929296 scopus 로고    scopus 로고
    • RKOF: Robust kernel-based local outlier detection
    • Springer: Heidelberg, Germany
    • Gao, J.; Hu, W.; Zhang, Z.; Zhang, X.; Wu, O. RKOF: Robust kernel-based local outlier detection. In Advances in Knowledge Discovery and Data Mining; Springer: Heidelberg, Germany, 2011; Vol. 6635, pp 270-283.
    • (2011) Advances in Knowledge Discovery and Data Mining , vol.6635 , pp. 270-283
    • Gao, J.1    Hu, W.2    Zhang, Z.3    Zhang, X.4    Wu, O.5
  • 34
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee, J. M.; Yoo, C. K.; Lee, I. B. Statistical process monitoring with independent component analysis J. Process Control 2004, 14, 467-485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 35
    • 74549172041 scopus 로고    scopus 로고
    • A process monitoring scheme based on independent component analysis and adjusted outliers
    • Hsu, C.; Chen, L.; Liu, C. A process monitoring scheme based on independent component analysis and adjusted outliers Int. J. Prod. Res. 2010, 48, 1727-1743
    • (2010) Int. J. Prod. Res. , vol.48 , pp. 1727-1743
    • Hsu, C.1    Chen, L.2    Liu, C.3
  • 36
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • Lee, J.; Kang, B.; Kang, S. Integrating independent component analysis and local outlier factor for plant-wide process monitoring J. Process Control 2011, 21, 1011-1021
    • (2011) J. Process Control , vol.21 , pp. 1011-1021
    • Lee, J.1    Kang, B.2    Kang, S.3
  • 37
    • 0037411806 scopus 로고    scopus 로고
    • Exploring process data with the use of robust outlier detection algorithms
    • Chiang, L. H.; Pell, R. J.; Seasholtz, M. B. Exploring process data with the use of robust outlier detection algorithms J. Process Control 2003, 13, 437-449
    • (2003) J. Process Control , vol.13 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 39
    • 79955839741 scopus 로고    scopus 로고
    • Robust data-driven modeling approach for real-time final product quality prediction in batch process operation
    • Wang, D. Robust data-driven modeling approach for real-time final product quality prediction in batch process operation IEEE Trans. Ind. Inf. 2011, 7, 371-377
    • (2011) IEEE Trans. Ind. Inf. , vol.7 , pp. 371-377
    • Wang, D.1
  • 40
    • 84859392648 scopus 로고    scopus 로고
    • A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses
    • Yu, J. A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses Comput. Chem. Eng. 2012, 41, 134-144
    • (2012) Comput. Chem. Eng. , vol.41 , pp. 134-144
    • Yu, J.1
  • 41
    • 79958703777 scopus 로고    scopus 로고
    • Localized fisher discriminant analysis based complex chemical process monitoring
    • Yu, J. Localized fisher discriminant analysis based complex chemical process monitoring AIChE J. 2011, 57, 1817-1828
    • (2011) AIChE J. , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 42
    • 79952591121 scopus 로고    scopus 로고
    • Nonlinear Bioprocess Monitoring Using Multiway Kernel Localized Fisher Discriminant Analysis
    • Yu, J. Nonlinear Bioprocess Monitoring Using Multiway Kernel Localized Fisher Discriminant Analysis Ind. Eng. Chem. Res. 2011, 50, 3390-3402
    • (2011) Ind. Eng. Chem. Res. , vol.50 , pp. 3390-3402
    • Yu, J.1
  • 43
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos, P.; MacGregor, J. F. Monitoring batch processes using multiway principal component analysis AIChE J. 1994, 40, 1361-1375
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 45
    • 0029379330 scopus 로고
    • Optimal steady-state operation of the Tennessee Eastman challenge process
    • Ricker, N. L. Optimal steady-state operation of the Tennessee Eastman challenge process Comput. Chem. Eng. 1995, 19, 949-959
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 949-959
    • Ricker, N.L.1
  • 46
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman Challenge Process
    • Ricker, N. L. Decentralized control of the Tennessee Eastman Challenge Process J. Process Control 1996, 6, 205-221
    • (1996) J. Process Control , vol.6 , pp. 205-221
    • Ricker, N.L.1
  • 48
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.