-
1
-
-
0242354134
-
Statistical process monitoring: Basics and beyond
-
Qin, S. J. Statistical process monitoring: basics and beyond J. Chemom. 2003, 17, 480-502
-
(2003)
J. Chemom.
, vol.17
, pp. 480-502
-
-
Qin, S.J.1
-
2
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee, J. M.; Yoo, C. K.; Choi, S. W.; Vanrolleghem, P. A.; Lee, I. B. Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 2004, 59, 223-234
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.M.1
Yoo, C.K.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.B.5
-
3
-
-
0043015539
-
Nonlinear principal component analysis-based on principal curves and neural networks
-
Dong, D.; McAvoy, T. J. Nonlinear principal component analysis-based on principal curves and neural networks Comput. Chem. Eng. 1996, 20, 65-78
-
(1996)
Comput. Chem. Eng.
, vol.20
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
4
-
-
34548593553
-
Fault detection of non-linear processes using kernel independent component analysis
-
Lee, J. M.; Qin, S. J.; Lee, I. B. Fault detection of non-linear processes using kernel independent component analysis Can. J. Chem. Eng. 2007, 85, 526-536
-
(2007)
Can. J. Chem. Eng.
, vol.85
, pp. 526-536
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
5
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku, W.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chemom. Intell. Lab. Syst. 1995, 30, 179-196
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
6
-
-
70350318936
-
Nonlinear Batch Process Monitoring Using Phase-Based Kernel-Independent Component Analysis-Principal Component Analysis (KICA-PCA)
-
Zhao, C. H.; Gao, F. R.; Wang, F. L. Nonlinear Batch Process Monitoring Using Phase-Based Kernel-Independent Component Analysis-Principal Component Analysis (KICA-PCA) Ind. Eng. Chem. Res. 2009, 48, 9163-9174
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 9163-9174
-
-
Zhao, C.H.1
Gao, F.R.2
Wang, F.L.3
-
7
-
-
34247109083
-
Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
-
Ge, Z. Q.; Song, Z. H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 2007, 46, 2054-2063
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 2054-2063
-
-
Ge, Z.Q.1
Song, Z.H.2
-
8
-
-
1042281570
-
Combination of independent component analysis and principal component analysis for multivariate statistical process control
-
Taipei, Taiwan
-
Kano, M.; Tanaka, S.; Hasebe, S.; Hashimoto, I.; Ohno, H. Combination of independent component analysis and principal component analysis for multivariate statistical process control. In Proceedings of International Symposium on Design, Operation and Control of Chemical Plants (PSE Asia 2002); Taipei, Taiwan, 2002; pp 319-324.
-
(2002)
Proceedings of International Symposium on Design, Operation and Control of Chemical Plants (PSE Asia 2002)
, pp. 319-324
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
9
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu, J.; Qin, S. J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 2008, 54, 1811-1829
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
10
-
-
78650358993
-
Mixture Bayesian Regularization method of PPCA for multimode process monitoring
-
Ge, Z. Q.; Song, Z. H. Mixture Bayesian Regularization method of PPCA for multimode process monitoring AIChE J. 2010, 56, 2838-2849
-
(2010)
AIChE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.Q.1
Song, Z.H.2
-
11
-
-
84862956465
-
Multimode Process Monitoring Based on Mode Identification
-
Tan, S.; Wang, F. L.; Peng, J.; Chang, Y. Q.; Wang, S. Multimode Process Monitoring Based on Mode Identification Ind. Eng. Chem. Res. 2012, 51, 374-388
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 374-388
-
-
Tan, S.1
Wang, F.L.2
Peng, J.3
Chang, Y.Q.4
Wang, S.5
-
12
-
-
84868210616
-
A novel local neighborhood standardization strategy and its application in fault detection of multimode processes
-
Ma, H. H.; Hu, Y.; Shi, H. B. A novel local neighborhood standardization strategy and its application in fault detection of multimode processes Chemom. Intell. Lab. Syst. 2012, 118, 287-300
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.118
, pp. 287-300
-
-
Ma, H.H.1
Hu, Y.2
Shi, H.B.3
-
13
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Ge, Z. Q.; Song, Z. H. Multimode process monitoring based on Bayesian method J. Chemom. 2009, 23, 636-650
-
(2009)
J. Chemom.
, vol.23
, pp. 636-650
-
-
Ge, Z.Q.1
Song, Z.H.2
-
14
-
-
33646178973
-
Performance monitoring of processes with multiple operating modes through multiple PLS models
-
Zhao, S. J.; Zhang, J.; Xu, Y. M. Performance monitoring of processes with multiple operating modes through multiple PLS models J. Process Control 2006, 16, 763-772
-
(2006)
J. Process Control
, vol.16
, pp. 763-772
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
15
-
-
6344249065
-
Monitoring of processes with multiple operation modes through multiple principle component analysis models
-
Zhao, S. J.; Zhang, J.; Xu, Y. M. Monitoring of processes with multiple operation modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025-7035
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
16
-
-
77953535805
-
Multi-model based process condition monitoring of offshore oil and gas production process
-
Natarajan, S.; Srinivasan, R. Multi-model based process condition monitoring of offshore oil and gas production process Chem. Eng. Res. Des. 2010, 88, 572-591
-
(2010)
Chem. Eng. Res. Des.
, vol.88
, pp. 572-591
-
-
Natarajan, S.1
Srinivasan, R.2
-
17
-
-
80051914224
-
Two-dimensional Bayesian monitoring method for nonlinear multimode processes
-
Ge, Z. Q.; Gao, F. R.; Song, Z. H. Two-dimensional Bayesian monitoring method for nonlinear multimode processes Chem. Eng. Sci. 2011, 66, 5173-5183
-
(2011)
Chem. Eng. Sci.
, vol.66
, pp. 5173-5183
-
-
Ge, Z.Q.1
Gao, F.R.2
Song, Z.H.3
-
18
-
-
0035255106
-
Performance monitoring of a multi-product semi-batch process
-
Lane, S.; Martin, E. B.; Kooijmans, R.; Morris, A. J. Performance monitoring of a multi-product semi-batch process J. Process Control 2001, 11, 1-11
-
(2001)
J. Process Control
, vol.11
, pp. 1-11
-
-
Lane, S.1
Martin, E.B.2
Kooijmans, R.3
Morris, A.J.4
-
19
-
-
84857790824
-
Fault detection and isolation in transient states using principal component analysis
-
Garcia-Alvarez, D.; Fuente, M. J.; Sainz, G. I. Fault detection and isolation in transient states using principal component analysis J. Process Control 2012, 22, 551-563
-
(2012)
J. Process Control
, vol.22
, pp. 551-563
-
-
Garcia-Alvarez, D.1
Fuente, M.J.2
Sainz, G.I.3
-
20
-
-
81055156706
-
A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
-
Yu, J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes Chem. Eng. Sci. 2011, 68, 506-519
-
(2011)
Chem. Eng. Sci.
, vol.68
, pp. 506-519
-
-
Yu, J.1
-
21
-
-
84862799924
-
A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis
-
Yu, J. A particle filter driven dynamic Gaussian mixture model approach for complex process monitoring and fault diagnosis J. Process Control 2012, 22, 778-788
-
(2012)
J. Process Control
, vol.22
, pp. 778-788
-
-
Yu, J.1
-
22
-
-
84859911625
-
Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models
-
Xie, X.; Shi, H. B. Dynamic Multimode Process Modeling and Monitoring Using Adaptive Gaussian Mixture Models Ind. Eng. Chem. Res. 2012, 51, 5497-5505
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5497-5505
-
-
Xie, X.1
Shi, H.B.2
-
23
-
-
70349329819
-
Multiway Gaussian mixture model based multiphase batch process monitoring
-
Yu, J.; Qin, S. J. Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 2009, 48, 8585-8594
-
(2009)
Ind. Eng. Chem. Res.
, vol.48
, pp. 8585-8594
-
-
Yu, J.1
Qin, S.J.2
-
24
-
-
75149115338
-
Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring
-
Yu, J. B. Hidden Markov models combining local and global information for nonlinear and multimodal process monitoring J. Process Control 2010, 20, 344-359
-
(2010)
J. Process Control
, vol.20
, pp. 344-359
-
-
Yu, J.B.1
-
25
-
-
84859903438
-
Hidden Markov Model Based Adaptive Independent Component Analysis Approach for Complex Chemical Process Monitoring and Fault Detection
-
Rashid, M. M.; Yu, J. Hidden Markov Model Based Adaptive Independent Component Analysis Approach for Complex Chemical Process Monitoring and Fault Detection Ind. Eng. Chem. Res. 2012, 51, 5506-5514
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 5506-5514
-
-
Rashid, M.M.1
Yu, J.2
-
26
-
-
0038148305
-
Probabilistic model for sensor fault detection and identification
-
Mehranbod, N.; Soroush, M.; Piovoso, M.; Ogunnaike, B. A. Probabilistic model for sensor fault detection and identification AIChE J. 2004, 49, 1787-1802
-
(2004)
AIChE J.
, vol.49
, pp. 1787-1802
-
-
Mehranbod, N.1
Soroush, M.2
Piovoso, M.3
Ogunnaike, B.A.4
-
27
-
-
10444224682
-
A method of sensor fault detection and identification
-
Mehranbod, N.; Soroush, M.; Panjapornpon, C. A method of sensor fault detection and identification J. Process Control 2005, 15, 321-339
-
(2005)
J. Process Control
, vol.15
, pp. 321-339
-
-
Mehranbod, N.1
Soroush, M.2
Panjapornpon, C.3
-
28
-
-
79953699930
-
A distribution-free method for process monitoring
-
Ge, Z. Q.; Song, Z. H. A distribution-free method for process monitoring Expert Syst. Appl. 2011, 38, 9821-9829
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 9821-9829
-
-
Ge, Z.Q.1
Song, Z.H.2
-
29
-
-
0039253819
-
LOF: Identifying density-based local outliers
-
Chen, W. Naughton, J. F. Bernstein, P. A. ACM: New York
-
Breunig, M. M.; Kriegel, H.; Ng, R. T.; Sander, J. LOF: Identifying density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Mangement of Data; Chen, W.; Naughton, J. F.; Bernstein, P. A., Eds.; ACM: New York, 2000; pp 93-104.
-
(2000)
Proceedings of the 2000 ACM SIGMOD International Conference on Mangement of Data
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.2
Ng, R.T.3
Sander, J.4
-
30
-
-
71749107907
-
A comparison of outlier detection algorithms for ITS data
-
Chen, S. Y.; Wang, W.; van Zuylen, H. A comparison of outlier detection algorithms for ITS data Expert Syst. Appl. 2010, 37, 1169-1178
-
(2010)
Expert Syst. Appl.
, vol.37
, pp. 1169-1178
-
-
Chen, S.Y.1
Wang, W.2
Van Zuylen, H.3
-
31
-
-
34347333289
-
A local-density based spatial clustering algorithm with noise
-
Duan, L.; Xu, L.; Guo, F.; Lee, J.; Yan, B. A local-density based spatial clustering algorithm with noise Inf. Syst. 2007, 32, 978-986
-
(2007)
Inf. Syst.
, vol.32
, pp. 978-986
-
-
Duan, L.1
Xu, L.2
Guo, F.3
Lee, J.4
Yan, B.5
-
32
-
-
79957929296
-
RKOF: Robust kernel-based local outlier detection
-
Springer: Heidelberg, Germany
-
Gao, J.; Hu, W.; Zhang, Z.; Zhang, X.; Wu, O. RKOF: Robust kernel-based local outlier detection. In Advances in Knowledge Discovery and Data Mining; Springer: Heidelberg, Germany, 2011; Vol. 6635, pp 270-283.
-
(2011)
Advances in Knowledge Discovery and Data Mining
, vol.6635
, pp. 270-283
-
-
Gao, J.1
Hu, W.2
Zhang, Z.3
Zhang, X.4
Wu, O.5
-
34
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee, J. M.; Yoo, C. K.; Lee, I. B. Statistical process monitoring with independent component analysis J. Process Control 2004, 14, 467-485
-
(2004)
J. Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.M.1
Yoo, C.K.2
Lee, I.B.3
-
35
-
-
74549172041
-
A process monitoring scheme based on independent component analysis and adjusted outliers
-
Hsu, C.; Chen, L.; Liu, C. A process monitoring scheme based on independent component analysis and adjusted outliers Int. J. Prod. Res. 2010, 48, 1727-1743
-
(2010)
Int. J. Prod. Res.
, vol.48
, pp. 1727-1743
-
-
Hsu, C.1
Chen, L.2
Liu, C.3
-
36
-
-
79960836522
-
Integrating independent component analysis and local outlier factor for plant-wide process monitoring
-
Lee, J.; Kang, B.; Kang, S. Integrating independent component analysis and local outlier factor for plant-wide process monitoring J. Process Control 2011, 21, 1011-1021
-
(2011)
J. Process Control
, vol.21
, pp. 1011-1021
-
-
Lee, J.1
Kang, B.2
Kang, S.3
-
37
-
-
0037411806
-
Exploring process data with the use of robust outlier detection algorithms
-
Chiang, L. H.; Pell, R. J.; Seasholtz, M. B. Exploring process data with the use of robust outlier detection algorithms J. Process Control 2003, 13, 437-449
-
(2003)
J. Process Control
, vol.13
, pp. 437-449
-
-
Chiang, L.H.1
Pell, R.J.2
Seasholtz, M.B.3
-
38
-
-
33847313243
-
Robust statistics in data analysis - A review: Basic concepts
-
Daszykowski, M.; Kaczmarek, K.; Heyden, Y. V.; Walczak, B. Robust statistics in data analysis-A review: Basic concepts Chemom. Intell. Lab. Syst. 2007, 85, 203-219
-
(2007)
Chemom. Intell. Lab. Syst.
, vol.85
, pp. 203-219
-
-
Daszykowski, M.1
Kaczmarek, K.2
Heyden, Y.V.3
Walczak, B.4
-
39
-
-
79955839741
-
Robust data-driven modeling approach for real-time final product quality prediction in batch process operation
-
Wang, D. Robust data-driven modeling approach for real-time final product quality prediction in batch process operation IEEE Trans. Ind. Inf. 2011, 7, 371-377
-
(2011)
IEEE Trans. Ind. Inf.
, vol.7
, pp. 371-377
-
-
Wang, D.1
-
40
-
-
84859392648
-
A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses
-
Yu, J. A Bayesian Inference Based Two-Stage Support Vector Regression Framework for Soft Sensor Development in Batch Bioprocesses Comput. Chem. Eng. 2012, 41, 134-144
-
(2012)
Comput. Chem. Eng.
, vol.41
, pp. 134-144
-
-
Yu, J.1
-
41
-
-
79958703777
-
Localized fisher discriminant analysis based complex chemical process monitoring
-
Yu, J. Localized fisher discriminant analysis based complex chemical process monitoring AIChE J. 2011, 57, 1817-1828
-
(2011)
AIChE J.
, vol.57
, pp. 1817-1828
-
-
Yu, J.1
-
42
-
-
79952591121
-
Nonlinear Bioprocess Monitoring Using Multiway Kernel Localized Fisher Discriminant Analysis
-
Yu, J. Nonlinear Bioprocess Monitoring Using Multiway Kernel Localized Fisher Discriminant Analysis Ind. Eng. Chem. Res. 2011, 50, 3390-3402
-
(2011)
Ind. Eng. Chem. Res.
, vol.50
, pp. 3390-3402
-
-
Yu, J.1
-
43
-
-
0028483476
-
Monitoring batch processes using multiway principal component analysis
-
Nomikos, P.; MacGregor, J. F. Monitoring batch processes using multiway principal component analysis AIChE J. 1994, 40, 1361-1375
-
(1994)
AIChE J.
, vol.40
, pp. 1361-1375
-
-
Nomikos, P.1
MacGregor, J.F.2
-
44
-
-
45949123735
-
Principal component analysis
-
Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis Chemom. Intell. Lab. Syst. 1987, 2, 37-52
-
(1987)
Chemom. Intell. Lab. Syst.
, vol.2
, pp. 37-52
-
-
Wold, S.1
Esbensen, K.2
Geladi, P.3
-
45
-
-
0029379330
-
Optimal steady-state operation of the Tennessee Eastman challenge process
-
Ricker, N. L. Optimal steady-state operation of the Tennessee Eastman challenge process Comput. Chem. Eng. 1995, 19, 949-959
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 949-959
-
-
Ricker, N.L.1
-
46
-
-
0030217795
-
Decentralized control of the Tennessee Eastman Challenge Process
-
Ricker, N. L. Decentralized control of the Tennessee Eastman Challenge Process J. Process Control 1996, 6, 205-221
-
(1996)
J. Process Control
, vol.6
, pp. 205-221
-
-
Ricker, N.L.1
-
48
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
|