메뉴 건너뛰기




Volumn 20, Issue 5, 2010, Pages 676-688

Nonlinear process monitoring based on linear subspace and Bayesian inference

Author keywords

Bayesian inference; Fault diagnosis; Linear subspace; Process monitoring; Statistical analysis

Indexed keywords

ALGORITHM COMPLEXITY; BAYESIAN INFERENCE; FAULT DIAGNOSIS; FAULT DIAGNOSIS METHOD; FAULT PROBABILITIES; LINEAR SUBSPACE; LINEAR SUBSPACE METHODS; MONITORING METHODS; NONLINEAR PROCESS; NONLINEAR PROCESS MONITORING; NUMERICAL EXAMPLE; STATISTICAL ANALYSIS; SUBMODELS; TENNESSEE EASTMAN; VARIABLE SELECTION;

EID: 77955305868     PISSN: 09591524     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jprocont.2010.03.003     Document Type: Article
Times cited : (165)

References (27)
  • 1
    • 0035442469 scopus 로고    scopus 로고
    • Extended PLS approach for enhanced condition monitoring of industrial processes
    • U. Kruger, Q. Chen, D.J. Sandoz, and R.C. McFarlane Extended PLS approach for enhanced condition monitoring of industrial processes AIChE J. 47 2001 2076 2091
    • (2001) AIChE J. , vol.47 , pp. 2076-2091
    • Kruger, U.1    Chen, Q.2    Sandoz, D.J.3    McFarlane, R.C.4
  • 2
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • S.J. Qin Statistical process monitoring: basics and beyond J. Chemometrics 17 2003 480 502
    • (2003) J. Chemometrics , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 3
    • 6344265494 scopus 로고    scopus 로고
    • Multidimensional visualization of principal component scores for process historical data analysis
    • X.Z. Wang, S. Medasani, F. Marhoon, and H. Albazzaz Multidimensional visualization of principal component scores for process historical data analysis Ind. Eng. Chem. Res. 43 2004 7036 7048
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7036-7048
    • Wang, X.Z.1    Medasani, S.2    Marhoon, F.3    Albazzaz, H.4
  • 5
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • U. Kruger, and G. Dimitriadis Diagnosis of process faults in chemical systems using a local partial least squares approach AIChE J. 54 2008 2581 2596
    • (2008) AIChE J. , vol.54 , pp. 2581-2596
    • Kruger, U.1    Dimitriadis, G.2
  • 6
    • 34248546466 scopus 로고    scopus 로고
    • Dissimilarity analysis based batch process monitoring using moving windows
    • C.H. Zhao, F.L. Wang, and M.X. Jia Dissimilarity analysis based batch process monitoring using moving windows AIChE J. 53 2007 1267 1277
    • (2007) AIChE J. , vol.53 , pp. 1267-1277
    • Zhao, C.H.1    Wang, F.L.2    Jia, M.X.3
  • 7
    • 0026849990 scopus 로고
    • Autoassociative neural networks
    • M.A. Kramer Autoassociative neural networks Comput. Chem. Eng. 16 1992 313 328
    • (1992) Comput. Chem. Eng. , vol.16 , pp. 313-328
    • Kramer, M.A.1
  • 8
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • D. Dong, and T.J. McAvoy Nonlinear principal component analysis-based on principal curves and neural networks Comput. Chem. Eng. 20 1996 65 78
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 9
    • 27844491086 scopus 로고    scopus 로고
    • Introduction of a nonlinearity measure for principal component models
    • U. Kruger, D. Antory, J. Hahn, G.W. Irwin, and G. McCullough Introduction of a nonlinearity measure for principal component models Comput. Chem. Eng. 29 2005 2355 2362
    • (2005) Comput. Chem. Eng. , vol.29 , pp. 2355-2362
    • Kruger, U.1    Antory, D.2    Hahn, J.3    Irwin, G.W.4    McCullough, G.5
  • 10
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • J.M. Lee, C.K. Yoo, S.W. Choi, P.A. Vanrolleghem, and I.B. Lee Nonlinear process monitoring using kernel principal component analysis Chem. Eng. Sci. 59 2004 223 234
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.M.1    Yoo, C.K.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.B.5
  • 11
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • C. Cheng, and M.S. Chiu Nonlinear process monitoring using JITL-PCA Chem. Intell. Lab. Syst. 76 2005 1 13
    • (2005) Chem. Intell. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.S.2
  • 12
    • 33646182626 scopus 로고    scopus 로고
    • A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring
    • A. Maulud, D. Wang, and J.A. Romagnoli A multi-scale orthogonal nonlinear strategy for multi-variate statistical process monitoring J. Process Control 16 2006 671 683
    • (2006) J. Process Control , vol.16 , pp. 671-683
    • Maulud, A.1    Wang, D.2    Romagnoli, J.A.3
  • 13
    • 37749003880 scopus 로고    scopus 로고
    • Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis
    • X. Wang, U. Kruger, G.W. Irwin, G. McCullough, and N. McDowell Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis IEEE T. Cont. Syst. Tech. 16 2008 122 129
    • (2008) IEEE T. Cont. Syst. Tech. , vol.16 , pp. 122-129
    • Wang, X.1    Kruger, U.2    Irwin, G.W.3    McCullough, G.4    McDowell, N.5
  • 14
    • 57049177632 scopus 로고    scopus 로고
    • Improved nonlinear fault detection technique and statistical analysis
    • Y.W. Zhang, and S.J. Qin Improved nonlinear fault detection technique and statistical analysis AIChE J. 54 2008 3207 3220
    • (2008) AIChE J. , vol.54 , pp. 3207-3220
    • Zhang, Y.W.1    Qin, S.J.2
  • 16
    • 0003216796 scopus 로고
    • Contribution plots: The missing link in multivariate quality control
    • Milwaukee, WI
    • P. Miller, R.E. Swanson, C.F. Heckler, Contribution plots: the missing link in multivariate quality control, In Fall Conf. of the ASQC and ASA, Milwaukee, WI, 1993.
    • (1993) Fall Conf. of the ASQC and ASA
    • Miller, P.1    Swanson, R.E.2    Heckler, C.F.3
  • 17
    • 0034621628 scopus 로고    scopus 로고
    • Generalized contribution plots in multivariate statistical process monitoring
    • J. Westerhuis, S. Gurden, and A. Smilde Generalized contribution plots in multivariate statistical process monitoring Chem. Intell. Lab. Syst. 51 2000 95 114
    • (2000) Chem. Intell. Lab. Syst. , vol.51 , pp. 95-114
    • Westerhuis, J.1    Gurden, S.2    Smilde, A.3
  • 18
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • R. Dunia, and S.J. Qin Subspace approach to multidimensional fault identification and reconstruction AIChE J. 44 1998 1813 1831
    • (1998) AIChE J. , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 20
    • 67349245154 scopus 로고    scopus 로고
    • Reconstruction-based contribution for process monitoring
    • C. Alcala, and S.J. Qin Reconstruction-based contribution for process monitoring Automatica 45 2009 1593 1600
    • (2009) Automatica , vol.45 , pp. 1593-1600
    • Alcala, C.1    Qin, S.J.2
  • 21
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • A. Singhai, and D.E. Seborg Evaluation of a pattern matching method for the Tennessee Eastman challenge process J. Process Control 16 2006 601 613
    • (2006) J. Process Control , vol.16 , pp. 601-613
    • Singhai, A.1    Seborg, D.E.2
  • 22
    • 49249127452 scopus 로고    scopus 로고
    • Robust online monitoring for multimode processes based on nonlinear external analysis
    • Z.Q. Ge, C.J. Yang, Z.H. Song, and H.Q. Wang Robust online monitoring for multimode processes based on nonlinear external analysis Ind. Eng. Chem. Res. 47 2008 4775 4783
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 4775-4783
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3    Wang, H.Q.4
  • 23
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • M. Kano, K. Nagao, H. Hasebe, I. Hashimoto, H. Ohno, R. Strauss, and B.R. Bakshi Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem Comput. Chem. Eng. 26 2002 161 174
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 161-174
    • Kano, M.1    Nagao, K.2    Hasebe, H.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6    Bakshi, B.R.7
  • 25
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • P.R. Lyman, and C. Georgakist Plant-wide control of the Tennessee Eastman problem Comput. Chem. Eng. 19 1995 321 331
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakist, C.2
  • 26
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • J.J. Downs, and E.F. Vogel A plant-wide industrial process control problem Comput. Chem. Eng. 17 1993 245 255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 27
    • 36749015609 scopus 로고    scopus 로고
    • SubXPCA and a generalized feature partitioning approach to principal component analysis
    • DOI 10.1016/j.patcog.2007.08.006, PII S0031320307003949
    • K.V. Kumar, and A. Negi SubXPCA and a generalized feature partitioning approach to principal component analysis Pattern Recogn. 41 2008 1398 1409 (Pubitemid 350212964)
    • (2008) Pattern Recognition , vol.41 , Issue.4 , pp. 1398-1409
    • Vijaya Kumar, K.1    Negi, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.