메뉴 건너뛰기




Volumn 41, Issue 15, 2014, Pages 6755-6772

A hybrid algorithm for Bayesian network structure learning with application to multi-label learning

Author keywords

Bayesian networks; Feature subset selection; Markov boundary; Multi label learning

Indexed keywords

ALGORITHMS; BENCHMARKING; CLASSIFICATION (OF INFORMATION); EXPERIMENTS; LEARNING SYSTEMS;

EID: 84902687696     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2014.04.032     Document Type: Article
Times cited : (84)

References (75)
  • 2
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
    • C.F. Aliferis, A.R. Statnikov, I. Tsamardinos, S. Mani, and X.D. Koutsoukos Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation Journal of Machine Learning Research, JMLR 11 2010 171 234
    • (2010) Journal of Machine Learning Research, JMLR , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.R.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 3
    • 80054948724 scopus 로고    scopus 로고
    • Incorporating label dependency into the binary relevance framework for multi-label classification
    • E. Alvares-Cherman, J. Metz, and M. Monard Incorporating label dependency into the binary relevance framework for multi-label classification Expert Systems With Applications, ESWA 39 2011 1647 1655
    • (2011) Expert Systems with Applications, ESWA , vol.39 , pp. 1647-1655
    • Alvares-Cherman, E.1    Metz, J.2    Monard, M.3
  • 4
    • 84887085341 scopus 로고    scopus 로고
    • A unified approach to estimation and control of the false discovery rate in Bayesian network skeleton identification
    • Armen, A. P.; & Tsamardinos, I. (2011). A unified approach to estimation and control of the false discovery rate in Bayesian network skeleton identification. In European symposium on artificial neural networks, ESANN.
    • (2011) European Symposium on Artificial Neural Networks, ESANN
    • Armen A., .P.1    Tsamardinos, I.2
  • 6
    • 77957127833 scopus 로고    scopus 로고
    • Analysis of lifestyle and metabolic predictors of visceral obesity with Bayesian networks
    • A. Aussem, A. Tchernof, S. Rodrigues de Morais, and S. Rome Analysis of lifestyle and metabolic predictors of visceral obesity with Bayesian networks BMC Bioinformatics 11 2010 487
    • (2010) BMC Bioinformatics , vol.11 , pp. 487
    • Aussem, A.1    Tchernof, A.2    Rodrigues De Morais, S.3    Rome, S.4
  • 7
    • 85017397187 scopus 로고    scopus 로고
    • Determining the direction of causal influence in large probabilistic networks: A constraint-based approach
    • Badea, A. (2004). Determining the direction of causal influence in large probabilistic networks: A constraint-based approach. In Proceedings of the sixteenth european conference on artificial intelligence (pp. 263-267).
    • (2004) Proceedings of the Sixteenth European Conference on Artificial Intelligence , pp. 263-267
    • Badea, A.1
  • 8
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • Bernard, A.; & Hartemink, A. (2005). Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data. In Proceedings of the pacific symposium on biocomputing (pp. 459-470).
    • (2005) Proceedings of the Pacific Symposium on Biocomputing , pp. 459-470
    • Bernard, A.1    Hartemink, A.2
  • 10
    • 84876707612 scopus 로고    scopus 로고
    • Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers
    • H. Borchani, C. Bielza, C. Toro, and P. Larrañaga Predicting human immunodeficiency virus inhibitors using multi-dimensional Bayesian network classifiers Artificial Intelligence in Medicine 57 2013 219 229
    • (2013) Artificial Intelligence in Medicine , vol.57 , pp. 219-229
    • Borchani, H.1    Bielza, C.2    Toro, C.3    Larrañaga, P.4
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • DOI 10.1023/A:1010933404324
    • L. Breiman Random forests Machine Learning 45 2001 5 32 (Pubitemid 32933532)
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 0001926525 scopus 로고
    • Theory refinement on Bayesian networks
    • B. D'Ambrosio, P. Smets, P. Bonissone, Morgan Kaufman San Mateo, CA, USA
    • W. Buntine Theory refinement on Bayesian networks B. D'Ambrosio, P. Smets, P. Bonissone, Uncertainty in artificial intelligence, UAI 1991 Morgan Kaufman San Mateo, CA, USA 52 60
    • (1991) Uncertainty in Artificial Intelligence, UAI , pp. 52-60
    • Buntine, W.1
  • 14
    • 77958066899 scopus 로고    scopus 로고
    • Causal and non-causal feature selection for ridge regression
    • G. Cawley Causal and non-causal feature selection for ridge regression JMLR: Workshop and Conference Proceedings 3 2008 107 128
    • (2008) JMLR: Workshop and Conference Proceedings , vol.3 , pp. 107-128
    • Cawley, G.1
  • 15
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • DOI 10.1016/S0004-3702(02)00191-1, PII S0004370202001911
    • J. Cheng, R. Greiner, J. Kelly, D.A. Bell, and W. Liu Learning Bayesian networks from data: An information-theory based approach Artificial Intelligence 137 2002 43 90 (Pubitemid 34405215)
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 18
    • 84888170812 scopus 로고    scopus 로고
    • Advances in Bayesian network learning using integer programming
    • Cussens, J.; & Bartlett, M. (2013). Advances in Bayesian network learning using integer programming. In Uncertainty in artificial intelligence (pp. 182-191).
    • (2013) Uncertainty in Artificial Intelligence , pp. 182-191
    • Cussens, J.1    Bartlett, M.2
  • 19
    • 84865223006 scopus 로고    scopus 로고
    • On label dependence and loss minimization in multi-label classification
    • K. Dembczyski, W. Waegeman, W. Cheng, and E. Hüllermeier On label dependence and loss minimization in multi-label classification Machine Learning 88 2012 5 45
    • (2012) Machine Learning , vol.88 , pp. 5-45
    • Dembczyski, K.1    Waegeman, W.2    Cheng, W.3    Hüllermeier, E.4
  • 20
  • 22
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The sparse candidate algorithm
    • K.B. Laskey, H. Prade, Morgan Kaufmann Publishers
    • N. Friedman, I. Nachman, and D. Peer Learning Bayesian network structure from massive datasets: The sparse candidate algorithm K.B. Laskey, H. Prade, Uncertainty in artificial intelligence, UAI 1999 Morgan Kaufmann Publishers 21 30
    • (1999) Uncertainty in Artificial Intelligence, UAI , pp. 21-30
    • Friedman, N.1    Nachman, I.2    Peer, D.3
  • 24
    • 83055191234 scopus 로고    scopus 로고
    • Correlated multi-label feature selection
    • C. Macdonald, I. Ounis, I. Ruthven, ACM
    • Q. Gu, Z. Li, and J. Han Correlated multi-label feature selection C. Macdonald, I. Ounis, I. Ruthven, CIKM 2011 ACM 1087 1096
    • (2011) CIKM , pp. 1087-1096
    • Gu, Q.1    Li, Z.2    Han, J.3
  • 26
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. Chickering Learning Bayesian networks: The combination of knowledge and statistical data Machine Learning 20 1995 197 243
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 27
    • 38049132551 scopus 로고    scopus 로고
    • Ensembles of multi-objective decision trees
    • J.N. Kok, Lecture notes in artificial intelligence Springer
    • D. Kocev, C. Vens, J. Struyf, and S. Džeroski Ensembles of multi-objective decision trees J.N. Kok, European conference on machine learning, ECML Lecture notes in artificial intelligence Vol. 4701 2007 Springer 624 631
    • (2007) European Conference on Machine Learning, ECML , vol.4701 VOL. , pp. 624-631
    • Kocev, D.1    Vens, C.2    Struyf, J.3    Džeroski, S.4
  • 29
    • 76749103392 scopus 로고    scopus 로고
    • Optimal search on clustered structural constraint for learning Bayesian network structure
    • K. Kojima, E. Perrier, S. Imoto, and S. Miyano Optimal search on clustered structural constraint for learning Bayesian network structure Journal of Machine Learning Research, JMLR 11 2010 285 310
    • (2010) Journal of Machine Learning Research, JMLR , vol.11 , pp. 285-310
    • Kojima, K.1    Perrier, E.2    Imoto, S.3    Miyano, S.4
  • 32
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomforest
    • A. Liaw, and M. Wiener Classification and regression by randomforest R News 2 2002 18 22
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 34
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • G. Madjarov, D. Kocev, D. Gjorgjevikj, and S. Džeroski An extensive experimental comparison of methods for multi-label learning Pattern Recognition 45 2012 3084 3104
    • (2012) Pattern Recognition , vol.45 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Džeroski, S.4
  • 35
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-instance learning for natural scene classification
    • Citeseer
    • Maron, O.; & Ratan, A. L. (1998). Multiple-instance learning for natural scene classification. In International conference on machine learning, ICML (Vol. 7, pp. 341-349). Citeseer.
    • (1998) International Conference on Machine Learning, ICML , vol.7 , pp. 341-349
    • Maron, O.1    Ratan A., .L.2
  • 36
    • 0003223784 scopus 로고    scopus 로고
    • Multi-label text classification with a mixture model trained by em
    • McCallum, A. (1999). Multi-label text classification with a mixture model trained by em. In AAAI workshop on text learning.
    • (1999) AAAI Workshop on Text Learning
    • McCallum, A.1
  • 37
    • 1942452317 scopus 로고    scopus 로고
    • Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
    • T. Fawcett, & N. Mishra (Eds.)
    • Moore, A.; & Wong, W. (2003). Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In T. Fawcett, & N. Mishra (Eds.), International conference on machine learning, ICML.
    • (2003) International Conference on Machine Learning, ICML
    • Moore, A.1    Wong, W.2
  • 41
    • 34249931694 scopus 로고    scopus 로고
    • Towards scalable and data efficient learning of Markov boundaries
    • DOI 10.1016/j.ijar.2006.06.008, PII S0888613X06000600, Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2005)
    • J. Peña, R. Nilsson, J. Björkegren, and J. Tegnér Towards scalable and data efficient learning of Markov boundaries International Journal of Approximate Reasoning 45 2007 211 232 (Pubitemid 46880195)
    • (2007) International Journal of Approximate Reasoning , vol.45 , Issue.2 , pp. 211-232
    • Pena, J.M.1    Nilsson, R.2    Bjorkegren, J.3    Tegner, J.4
  • 42
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • J.M. Peña, J. Björkegren, and J. Tegnér Growing Bayesian network models of gene networks from seed genes Bioinformatics 40 2005 224 229
    • (2005) Bioinformatics , vol.40 , pp. 224-229
    • Peña, J.M.1    Björkegren, J.2    Tegnér, J.3
  • 47
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • D. Peer, A. Regev, G. Elidan, and N. Friedman Inferring subnetworks from perturbed expression profiles Bioinformatics 17 2001 215 224
    • (2001) Bioinformatics , vol.17 , pp. 215-224
    • Peer, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 49
  • 52
    • 75749145760 scopus 로고    scopus 로고
    • A novel Markov boundary based feature subset selection algorithm
    • S. Rodrigues de Morais, and A. Aussem A novel Markov boundary based feature subset selection algorithm Neurocomputing 73 2010 578 584
    • (2010) Neurocomputing , vol.73 , pp. 578-584
    • Rodrigues De Morais, S.1    Aussem, A.2
  • 53
    • 45149115870 scopus 로고    scopus 로고
    • Improved functional prediction of proteins by learning kernel combinations in multilabel settings
    • V. Roth, and B. Fischer Improved functional prediction of proteins by learning kernel combinations in multilabel settings BMC Bioinformatics 8 2007 S12
    • (2007) BMC Bioinformatics , vol.8 , pp. 12
    • Roth, V.1    Fischer, B.2
  • 55
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian networks with the bnlearn R package
    • M. Scutari Learning Bayesian networks with the bnlearn R package Journal of Statistical Software 35 2010 1 22
    • (2010) Journal of Statistical Software , vol.35 , pp. 1-22
    • Scutari, M.1
  • 56
  • 58
    • 84876705387 scopus 로고    scopus 로고
    • Identifying significant edges in graphical models of molecular networks
    • M. Scutari, and R. Nagarajan Identifying significant edges in graphical models of molecular networks Artificial Intelligence in Medicine 57 2013 207 217
    • (2013) Artificial Intelligence in Medicine , vol.57 , pp. 207-217
    • Scutari, M.1    Nagarajan, R.2
  • 59
    • 80053201441 scopus 로고    scopus 로고
    • A simple approach for finding the globally optimal Bayesian network structure
    • Silander, T.; & Myllymäki, P. (2006). A simple approach for finding the globally optimal Bayesian network structure. In Uncertainty in artificial intelligence, UAI (pp. 445-452).
    • (2006) Uncertainty in Artificial Intelligence, UAI , pp. 445-452
    • Silander, T.1    Myllymäki, P.2
  • 63
    • 84896545829 scopus 로고    scopus 로고
    • Learning Bayesian network structure: Towards the essential graph by integer linear programming tools
    • M. Studený, and D. Haws Learning Bayesian network structure: Towards the essential graph by integer linear programming tools International Journal of Approximate Reasoning 55 2014 1043 1071
    • (2014) International Journal of Approximate Reasoning , vol.55 , pp. 1043-1071
    • Studený, M.1    Haws, D.2
  • 64
    • 84873447495 scopus 로고    scopus 로고
    • Multi-label classification of music into emotions
    • Trohidis, K.; Tsoumakas, G.; Kalliris, G.; & Vlahavas, I. (2008). Multi-label classification of music into emotions. In ISMIR (pp. 325-330).
    • (2008) ISMIR , pp. 325-330
    • Trohidis, K.1    Tsoumakas, G.2    Kalliris, G.3    Vlahavas, I.4
  • 67
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • DOI 10.1007/s10994-006-6889-7
    • I. Tsamardinos, L. Brown, and C. Aliferis The max-min hill-climbing Bayesian network structure learning algorithm Machine Learning 65 2006 31 78 (Pubitemid 44451193)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 73
    • 84885836157 scopus 로고    scopus 로고
    • Efficient methods for learning Bayesian network super-structures
    • E. Villanueva, and C.D. Maciel Efficient methods for learning Bayesian network super-structures Neurocomputing 2014 3 12
    • (2014) Neurocomputing , pp. 3-12
    • Villanueva, E.1    Maciel, C.D.2
  • 75
    • 33748366796 scopus 로고    scopus 로고
    • Multilabel neural networks with applications to functional genomics and text categorization
    • DOI 10.1109/TKDE.2006.162, 1683770
    • M.-L. Zhang, and Z.-H. Zhou Multilabel neural networks with applications to functional genomics and text categorization IEEE Transactions on Knowledge and Data Engineering 18 2006 1338 1351 (Pubitemid 44335199)
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.10 , pp. 1338-1351
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.