메뉴 건너뛰기




Volumn 1, Issue 4, 2012, Pages 303-313

Binary relevance efficacy for multilabel classification

Author keywords

Binary relevance; Label dependency; Multilabel classification; Synthetic datasets

Indexed keywords

ARTIFICIAL INTELLIGENCE;

EID: 84879300072     PISSN: 21926352     EISSN: 21926360     Source Type: Journal    
DOI: 10.1007/s13748-012-0030-x     Document Type: Article
Times cited : (233)

References (23)
  • 1
    • 79955550286 scopus 로고    scopus 로고
    • Multi-dimensional classification with bayesian networks
    • Bielza, C., Li, G., Larrañaga, P.: Multi-dimensional classification with bayesian networks. Int. J. Approx. Reason. 52(6), 705-727 (2011).
    • (2011) Int. J. Approx. Reason. , vol.52 , Issue.6 , pp. 705-727
    • Bielza, C.1    Li, G.2    Larrañaga, P.3
  • 2
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines
    • Available at
    • Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines. ACM Trans. Intelli. Syst. Technol. 2, 27: 1-27: Available at http://www. csie. ntu. edu. tw/~cjlin/libsvm/ (2011).
    • (2011) ACM Trans. Intelli. Syst. Technol. 2 , vol.27 , pp. 1-27
    • Chang, C.-C.1    Lin, C.-J.2
  • 3
    • 68949141664 scopus 로고    scopus 로고
    • Combining instance-based learning and logistic regression for multilabel classification
    • Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regression for multilabel classification. Mach. Learn. 76(2), 211-225 (2009).
    • (2009) Mach. Learn. , vol.76 , Issue.2 , pp. 211-225
    • Cheng, W.1    Hüllermeier, E.2
  • 8
    • 31844446804 scopus 로고    scopus 로고
    • A support vector method for multivariate performance measures
    • Joachims, T.: A support vector method for multivariate performance measures. In: Proceedings of the ICML '05, pp. 377-384 (2005).
    • (2005) Proceedings of the ICML '05 , pp. 377-384
    • Joachims, T.1
  • 9
    • 80455168533 scopus 로고    scopus 로고
    • Graphical feature selection for multilabel classification tasks
    • Springer, Lecture Notes in Computer Science, In: Gama, J., Bradley, E., Hollmén, J. (eds.)
    • Lastra, G., Luaces, O., Quevedo, J., Bahamonde, A.: Graphical feature selection for multilabel classification tasks. In: Gama, J., Bradley, E., Hollmén, J. (eds.) Proceedings of Advances in Intelligent Data Analysis X (IDA 2011). Springer, Lecture Notes in Computer Science, vol. 7014, 246-257 (2011).
    • (2011) Proceedings of Advances in Intelligent Data Analysis X (IDA 2011) , vol.7014 , pp. 246-257
    • Lastra, G.1    Luaces, O.2    Quevedo, J.3    Bahamonde, A.4
  • 10
    • 84861617363 scopus 로고    scopus 로고
    • An extensive experimental comparison of methods for multi-label learning
    • Madjarov, G., Kocev, D., Gjorgjevikj, D., Deroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recognit. 45(9), 3084-3104 (2012).
    • (2012) Pattern Recognit. , vol.45 , Issue.9 , pp. 3084-3104
    • Madjarov, G.1    Kocev, D.2    Gjorgjevikj, D.3    Deroski, S.4
  • 13
    • 80052965571 scopus 로고    scopus 로고
    • Multilabel classifiers with a probabilistic thresholding strategy
    • Quevedo, J. R., Luaces, O., Bahamonde, A.: Multilabel classifiers with a probabilistic thresholding strategy. Pattern Recognit. 45(2), 876-883 (2012).
    • (2012) Pattern Recognit. , vol.45 , Issue.2 , pp. 876-883
    • Quevedo, J.R.1    Luaces, O.2    Bahamonde, A.3
  • 17
    • 83155175374 scopus 로고    scopus 로고
    • Classifier chains for multi-label classification
    • Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn. 85(3), 333-359 (2011b).
    • (2011) Mach. Learn. , vol.85 , Issue.3 , pp. 333-359
    • Read, J.1    Pfahringer, B.2    Holmes, G.3    Frank, E.4
  • 18
    • 0033905095 scopus 로고    scopus 로고
    • Boostexter: a boosting-based system for text categorization
    • Schapire, R., Singer, Y.: Boostexter: a boosting-based system for text categorization. Mach. Learn. 39(2), 135-168 (2000).
    • (2000) Mach. Learn. , vol.39 , Issue.2 , pp. 135-168
    • Schapire, R.1    Singer, Y.2
  • 23
    • 33947681316 scopus 로고    scopus 로고
    • ML-KNN: a lazy learning approach to multi-label learning
    • Zhang, M. L., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognit. 40(7), 2038-2048 (2007).
    • (2007) Pattern Recognit. , vol.40 , Issue.7 , pp. 2038-2048
    • Zhang, M.L.1    Zhou, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.