메뉴 건너뛰기




Volumn 65, Issue 1, 2006, Pages 31-78

The max-min hill-climbing Bayesian network structure learning algorithm

Author keywords

Bayesian networks; Graphical models; Structure learning

Indexed keywords

BAYESIAN NETWORKS; MAX-MIN HILL-CLIMBING (MMHC); SPARSE CANDIDATE ALGORITHMS; STRUCTURE LEARNING;

EID: 33746035971     PISSN: 08856125     EISSN: 15730565     Source Type: Journal    
DOI: 10.1007/s10994-006-6889-7     Document Type: Article
Times cited : (1670)

References (81)
  • 3
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • Acid, S., & de Campos, L. M. (2003). Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 445-490.
    • (2003) Journal of Artificial Intelligence Research , pp. 445-490
    • Acid, S.1    De Campos, L.M.2
  • 5
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 10
    • 13844295342 scopus 로고    scopus 로고
    • The variational Bayesian em algorithm for incomplete data: With application to scoring graphical model structures
    • J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.). Oxford University Press
    • Beal, M. J. & Ghahramani, Z. (2003). The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics 7. Oxford University Press.
    • (2003) Bayesian Statistics , vol.7
    • Beal, M.J.1    Ghahramani, Z.2
  • 16
    • 0034987054 scopus 로고    scopus 로고
    • A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia
    • Chapman, W. W., Fizman, M., Chapman, B. E. & Haug, P. J. (2001). A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia. Journal of Biomedical Informatics, 34, 4-14.
    • (2001) Journal of Biomedical Informatics , vol.34 , pp. 4-14
    • Chapman, W.W.1    Fizman, M.2    Chapman, B.E.3    Haug, P.J.4
  • 17
    • 0038738492 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An efficient approach based on information theory
    • University of Alberta, Canada
    • Cheng, J., Bell, D., & Liu, W. (1998). Learning Bayesian networks from data: An efficient approach based on information theory. Technical report, University of Alberta, Canada.
    • (1998) Technical Report
    • Cheng, J.1    Bell, D.2    Liu, W.3
  • 18
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • Cheng, J., Greiner, R., Kelly, J., Bell, D. A. & Liu, W (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137, 43-90.
    • (2002) Artificial Intelligence , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.A.4    Liu, W.5
  • 20
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-complete
    • D. Fisher and H. Lenz (Eds.) Springer-Verlag
    • Chickering, D. (1996). Learning Bayesian networks is NP-complete. In D. Fisher and H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics V (pp. 121-130) Springer-Verlag.
    • (1996) Learning from Data: Artificial Intelligence and Statistics V , pp. 121-130
    • Chickering, D.1
  • 21
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian-network structures
    • Chickering, D. (2002b). Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 445-498.
    • (2002) Journal of Machine Learning Research , pp. 445-498
    • Chickering, D.1
  • 24
  • 25
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309-347.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 30
    • 0041995260 scopus 로고
    • A simple algorithm to construct a consistent extension of a partially oriented graph
    • Cognitive Systems Laboratory, UCLA
    • Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA.
    • (1992) Technicial Report , vol.R-185
    • Dor, D.1    Tarsi, M.2
  • 35
    • 0004194893 scopus 로고    scopus 로고
    • Glymour, C., & Cooper, G. F. (eds.). AAAI Press/The MIT Press
    • Glymour, C., & Cooper, G. F. (eds.) (1999). Computation, causation, and discovery. AAAI Press/The MIT Press.
    • (1999) Computation, Causation, and Discovery
  • 38
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D. E., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.E.1    Geiger, D.2    Chickering, D.M.3
  • 41
    • 8344264124 scopus 로고    scopus 로고
    • Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops
    • Department of Computer Science, Aalborg University, Denmark
    • Jensen, C. S., & Kong, A. (1996). Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops. Research Report R-96-2048, Department of Computer Science, Aalborg University, Denmark.
    • (1996) Research Report , vol.R-96-2048
    • Jensen, C.S.1    Kong, A.2
  • 42
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan, M. I., Ghahramani, Z., T.S., J., & L.K., S. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183-233.
    • (1999) Machine Learning , vol.37 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    J., T.S.3    S., L.K.4
  • 43
    • 4344618234 scopus 로고    scopus 로고
    • On the inclusion problem
    • Academy of Sciences of the Czech Republic
    • Kocka, T., Bouckaert, R., & Studeny, M. (2001). On the inclusion problem. Technical report, Academy of Sciences of the Czech Republic.
    • (2001) Technical Report
    • Kocka, T.1    Bouckaert, R.2    Studeny, M.3
  • 44
    • 31844439894 scopus 로고    scopus 로고
    • Exact Bayesian structure discovery in Bayesian networks
    • Kovisto, M., & Sood, K. (2004). Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5, 549-573.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Kovisto, M.1    Sood, K.2
  • 46
    • 26944467334 scopus 로고    scopus 로고
    • A dynamic adaptation of AD-trees for efficient machine learning on large data sets
    • San Francisco, CA: Morgan Kaufmann
    • Komarek, P., & Moore, A. (2000). A dynamic adaptation of AD-trees for efficient machine learning on large data sets. In Proc. 17th International Conf. on Machine Learning (pp. 495-502). San Francisco, CA: Morgan Kaufmann.
    • (2000) Proc. 17th International Conf. on Machine Learning , pp. 495-502
    • Komarek, P.1    Moore, A.2
  • 47
    • 0036250059 scopus 로고    scopus 로고
    • The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
    • Kristensen, K., & Rasmussen, I. A. (2002). The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33, 197-217.
    • (2002) Computers and Electronics in Agriculture , vol.33 , pp. 197-217
    • Kristensen, K.1    Rasmussen, I.A.2
  • 53
    • 0001828003 scopus 로고    scopus 로고
    • Cached sufficient statistics for efficient machine learning with large datasets
    • Moore, A., & Lee, M. (1998). Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8, 67-91.
    • (1998) Journal of Artificial Intelligence Research , vol.8 , pp. 67-91
    • Moore, A.1    Lee, M.2
  • 55
    • 1942452317 scopus 로고    scopus 로고
    • Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
    • Moore, A., & Wong, W. (2003). Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In Twentieth International Conference on Machine Learning (ICML-2003).
    • (2003) Twentieth International Conference on Machine Learning (ICML-2003)
    • Moore, A.1    Wong, W.2
  • 60
    • 0002838962 scopus 로고
    • A theory of inferred causation
    • J. F. Allen, R. Fikes, & E. Sandewall (Eds.). San Mateo, California: Morgan Kaufmann
    • Pearl, J., & Verma, T. (1991). A theory of inferred causation. In J. F. Allen, R. Fikes, & E. Sandewall (Eds.), KR'91: Principles of knowledge representation and reasoning (pp. 441-452). San Mateo, California: Morgan Kaufmann.
    • (1991) KR'91: Principles of Knowledge Representation and Reasoning , pp. 441-452
    • Pearl, J.1    Verma, T.2
  • 62
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465-671.
    • (1978) Automatica , vol.14 , pp. 465-671
    • Rissanen, J.1
  • 64
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 67
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K. et al. & Eisen, M. B. (1998). Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273-3297.
    • (1998) Molecular Biology of the Cell , vol.9 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6
  • 72
    • 29344472598 scopus 로고    scopus 로고
    • An algorithm for the generation of large Bayesian networks
    • Vanderbilt University
    • Statnikov, A., Tsamardinos, I., & Aliferis, C. F. (2003). An algorithm for the generation of large Bayesian networks. Technical Report DSL-03-01, Vanderbilt University.
    • (2003) Technical Report , vol.DSL-03-01
    • Statnikov, A.1    Tsamardinos, I.2    Aliferis, C.F.3
  • 77
    • 14244249973 scopus 로고    scopus 로고
    • Time and sample efficient discovery of Markov Blankets and direct causal relations
    • Vanderbilt University
    • Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003a). Time and sample efficient discovery of Markov Blankets and direct causal relations. Technical Report DSL-03-02, Vanderbilt University.
    • (2003) Technical Report , vol.DSL-03-02
    • Tsamardinos, I.1    Aliferis, C.F.2    Statnikov, A.3
  • 78
    • 28344447479 scopus 로고    scopus 로고
    • Scaling-up Bayesian network learning to thousands of variables using local learning technique
    • Dept. Biomedical Informatics, Vanderbilt University
    • Tsamardinos, I., Aliferis, C. F., Statnikov, A., & Brown. L. E. (2003a). Scaling-Up Bayesian network learning to thousands of variables using local Learning Technique. Technical Report DSL TR-03-02, Dept. Biomedical Informatics, Vanderbilt University.
    • (2003) Technical Report , vol.DSL TR-03-02
    • Tsamardinos, I.1    Aliferis, C.F.2    Statnikov, A.3    Brown, L.E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.