-
1
-
-
0030095171
-
Hailfinder: A Bayesian system for forecasting severe weather
-
Abramson, B., Brown, J., Edwards, W., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting, 12, 57-71.
-
(1996)
International Journal of Forecasting
, vol.12
, pp. 57-71
-
-
Abramson, B.1
Brown, J.2
Edwards, W.3
Murphy, A.4
Winkler, R.L.5
-
2
-
-
1842815776
-
A comparison of learning algorithms for Bayesian networks: A case study based on data from an emergency medical service
-
Acid, S., de Campos, L., Fernandez-Luna, J., Rodriguez, S., Rodriguez, J., & Salcedo, J. (2004). A comparison of learning algorithms for Bayesian networks: A case study based on data from an emergency medical service. Artificial Intelligence in Medicine, 30, 215-232.
-
(2004)
Artificial Intelligence in Medicine
, vol.30
, pp. 215-232
-
-
Acid, S.1
De Campos, L.2
Fernandez-Luna, J.3
Rodriguez, S.4
Rodriguez, J.5
Salcedo, J.6
-
3
-
-
21244484641
-
Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
-
Acid, S., & de Campos, L. M. (2003). Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 445-490.
-
(2003)
Journal of Artificial Intelligence Research
, pp. 445-490
-
-
Acid, S.1
De Campos, L.M.2
-
5
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
6
-
-
1642373967
-
Causal explorer: A causal probabilistic network learning toolkit for biomedical discovery
-
Aliferis, C. F., Tsamardinos, I., Statnikov, A., & Brown, L. E. (2003a). Causal explorer: A causal probabilistic network learning toolkit for biomedical discovery. In International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS '03) (pp. 371-376).
-
(2003)
International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS '03)
, pp. 371-376
-
-
Aliferis, C.F.1
Tsamardinos, I.2
Statnikov, A.3
Brown, L.E.4
-
7
-
-
14344265835
-
HITON, A novel markov blanket algorithm for optimal variable selection
-
Aliferis, C. F., Tsamardinos, I., & Statnikov, A. (2003b). HITON, A novel markov blanket algorithm for optimal variable selection. In American Medical Informatics Association (AMIA) (pp. 21-25).
-
(2003)
American Medical Informatics Association (AMIA)
, pp. 21-25
-
-
Aliferis, C.F.1
Tsamardinos, I.2
Statnikov, A.3
-
8
-
-
0002110602
-
MUNIN - An expert EMG assistant
-
J. E. Desmedt (Eds.)
-
Andreassen, S., Jensen, F. V., Andersen, S. K., Falck, B., Kharulff, U., & Woldbye, M. (1989). MUNIN - An expert EMG assistant. In J. E. Desmedt (Eds.), Computer-aided electromyography and expert systems.
-
(1989)
Computer-aided Electromyography and Expert Systems
-
-
Andreassen, S.1
Jensen, F.V.2
Andersen, S.K.3
Falck, B.4
Kharulff, U.5
Woldbye, M.6
-
10
-
-
13844295342
-
The variational Bayesian em algorithm for incomplete data: With application to scoring graphical model structures
-
J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.). Oxford University Press
-
Beal, M. J. & Ghahramani, Z. (2003). The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics 7. Oxford University Press.
-
(2003)
Bayesian Statistics
, vol.7
-
-
Beal, M.J.1
Ghahramani, Z.2
-
11
-
-
0002460150
-
The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
-
Beinlich, I. A., Suermondt, H., Chavez, R., Cooper, G., et al. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In Second European Conference in Artificial Intelligence in Medicine.
-
(1989)
Second European Conference in Artificial Intelligence in Medicine
-
-
Beinlich, I.A.1
Suermondt, H.2
Chavez, R.3
Cooper, G.4
-
12
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29.
-
(1997)
Machine Learning
, pp. 29
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
14
-
-
85044704322
-
A novel algorithm for scalable and accurate bayesian network learning
-
San Francisco, California
-
Brown, L., Tsamardinos, I., & Aliferis, C. (2004). A novel algorithm for scalable and accurate bayesian network learning. In 11th World Congress on Medical Informatics (MEDINFO). San Francisco, California.
-
(2004)
11th World Congress on Medical Informatics (MEDINFO)
-
-
Brown, L.1
Tsamardinos, I.2
Aliferis, C.3
-
16
-
-
0034987054
-
A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia
-
Chapman, W. W., Fizman, M., Chapman, B. E. & Haug, P. J. (2001). A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia. Journal of Biomedical Informatics, 34, 4-14.
-
(2001)
Journal of Biomedical Informatics
, vol.34
, pp. 4-14
-
-
Chapman, W.W.1
Fizman, M.2
Chapman, B.E.3
Haug, P.J.4
-
17
-
-
0038738492
-
Learning Bayesian networks from data: An efficient approach based on information theory
-
University of Alberta, Canada
-
Cheng, J., Bell, D., & Liu, W. (1998). Learning Bayesian networks from data: An efficient approach based on information theory. Technical report, University of Alberta, Canada.
-
(1998)
Technical Report
-
-
Cheng, J.1
Bell, D.2
Liu, W.3
-
18
-
-
0036567524
-
Learning Bayesian networks from data: An information-theory based approach
-
Cheng, J., Greiner, R., Kelly, J., Bell, D. A. & Liu, W (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137, 43-90.
-
(2002)
Artificial Intelligence
, vol.137
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.A.4
Liu, W.5
-
20
-
-
0001019707
-
Learning Bayesian networks is NP-complete
-
D. Fisher and H. Lenz (Eds.) Springer-Verlag
-
Chickering, D. (1996). Learning Bayesian networks is NP-complete. In D. Fisher and H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics V (pp. 121-130) Springer-Verlag.
-
(1996)
Learning from Data: Artificial Intelligence and Statistics V
, pp. 121-130
-
-
Chickering, D.1
-
21
-
-
0042496103
-
Learning equivalence classes of Bayesian-network structures
-
Chickering, D. (2002b). Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 445-498.
-
(2002)
Journal of Machine Learning Research
, pp. 445-498
-
-
Chickering, D.1
-
23
-
-
33646107783
-
Large-sample learning of Bayesian networks is NP-hard
-
Chickering, D., Meek, C. & Heckerman D. (2004). Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research, 5, 1287-1330.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 1287-1330
-
-
Chickering, D.1
Meek, C.2
Heckerman, D.3
-
24
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering, D. M. (2002a). Optimal structure identification with greedy search. Journal of Machine Learning Research, 507-554.
-
(2002)
Journal of Machine Learning Research
, pp. 507-554
-
-
Chickering, D.M.1
-
25
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4), 309-347.
-
(1992)
Machine Learning
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
26
-
-
0003687180
-
-
Springer
-
Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic networks and expert systems. Springer.
-
(1999)
Probabilistic Networks and Expert Systems
-
-
Cowell, R.G.1
Dawid, A.P.2
Lauritzen, S.L.3
Spiegelhalter, D.J.4
-
30
-
-
0041995260
-
A simple algorithm to construct a consistent extension of a partially oriented graph
-
Cognitive Systems Laboratory, UCLA
-
Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA.
-
(1992)
Technicial Report
, vol.R-185
-
-
Dor, D.1
Tarsi, M.2
-
32
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian networks to analyze expression data. Computational Biology, 7, 601-620.
-
(2000)
Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
35
-
-
0004194893
-
-
Glymour, C., & Cooper, G. F. (eds.). AAAI Press/The MIT Press
-
Glymour, C., & Cooper, G. F. (eds.) (1999). Computation, causation, and discovery. AAAI Press/The MIT Press.
-
(1999)
Computation, Causation, and Discovery
-
-
-
38
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D. E., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
-
(1995)
Machine Learning
, vol.20
, pp. 197-243
-
-
Heckerman, D.E.1
Geiger, D.2
Chickering, D.M.3
-
41
-
-
8344264124
-
Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops
-
Department of Computer Science, Aalborg University, Denmark
-
Jensen, C. S., & Kong, A. (1996). Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops. Research Report R-96-2048, Department of Computer Science, Aalborg University, Denmark.
-
(1996)
Research Report
, vol.R-96-2048
-
-
Jensen, C.S.1
Kong, A.2
-
42
-
-
0033225865
-
An introduction to variational methods for graphical models
-
Jordan, M. I., Ghahramani, Z., T.S., J., & L.K., S. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183-233.
-
(1999)
Machine Learning
, vol.37
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
J., T.S.3
S., L.K.4
-
43
-
-
4344618234
-
On the inclusion problem
-
Academy of Sciences of the Czech Republic
-
Kocka, T., Bouckaert, R., & Studeny, M. (2001). On the inclusion problem. Technical report, Academy of Sciences of the Czech Republic.
-
(2001)
Technical Report
-
-
Kocka, T.1
Bouckaert, R.2
Studeny, M.3
-
44
-
-
31844439894
-
Exact Bayesian structure discovery in Bayesian networks
-
Kovisto, M., & Sood, K. (2004). Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5, 549-573.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Kovisto, M.1
Sood, K.2
-
46
-
-
26944467334
-
A dynamic adaptation of AD-trees for efficient machine learning on large data sets
-
San Francisco, CA: Morgan Kaufmann
-
Komarek, P., & Moore, A. (2000). A dynamic adaptation of AD-trees for efficient machine learning on large data sets. In Proc. 17th International Conf. on Machine Learning (pp. 495-502). San Francisco, CA: Morgan Kaufmann.
-
(2000)
Proc. 17th International Conf. on Machine Learning
, pp. 495-502
-
-
Komarek, P.1
Moore, A.2
-
47
-
-
0036250059
-
The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides
-
Kristensen, K., & Rasmussen, I. A. (2002). The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33, 197-217.
-
(2002)
Computers and Electronics in Agriculture
, vol.33
, pp. 197-217
-
-
Kristensen, K.1
Rasmussen, I.A.2
-
53
-
-
0001828003
-
Cached sufficient statistics for efficient machine learning with large datasets
-
Moore, A., & Lee, M. (1998). Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8, 67-91.
-
(1998)
Journal of Artificial Intelligence Research
, vol.8
, pp. 67-91
-
-
Moore, A.1
Lee, M.2
-
55
-
-
1942452317
-
Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
-
Moore, A., & Wong, W. (2003). Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In Twentieth International Conference on Machine Learning (ICML-2003).
-
(2003)
Twentieth International Conference on Machine Learning (ICML-2003)
-
-
Moore, A.1
Wong, W.2
-
57
-
-
15544368544
-
On local optima in learning bayesian networks
-
Nielson, J., Kocka, T., & Pena, J. (2003). On local optima in learning bayesian networks. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, 435-442.
-
(2003)
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence
, pp. 435-442
-
-
Nielson, J.1
Kocka, T.2
Pena, J.3
-
60
-
-
0002838962
-
A theory of inferred causation
-
J. F. Allen, R. Fikes, & E. Sandewall (Eds.). San Mateo, California: Morgan Kaufmann
-
Pearl, J., & Verma, T. (1991). A theory of inferred causation. In J. F. Allen, R. Fikes, & E. Sandewall (Eds.), KR'91: Principles of knowledge representation and reasoning (pp. 441-452). San Mateo, California: Morgan Kaufmann.
-
(1991)
KR'91: Principles of Knowledge Representation and Reasoning
, pp. 441-452
-
-
Pearl, J.1
Verma, T.2
-
61
-
-
84937349279
-
The theory of signal detectability
-
Peterson, W., TG, B., & Fox, W. (1954). The theory of signal detectability. IRE Professional Group on Information Theory PGIT-4, 171-212.
-
(1954)
IRE Professional Group on Information Theory PGIT-4
, pp. 171-212
-
-
Peterson, W.1
Tg, B.2
Fox, W.3
-
62
-
-
0018015137
-
Modeling by shortest data description
-
Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465-671.
-
(1978)
Automatica
, vol.14
, pp. 465-671
-
-
Rissanen, J.1
-
64
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
65
-
-
23044519608
-
Scalable techniques for mining causal structures
-
Silverstein, C., Brin, S., Motwani, R., & Ullman, J. (2000). Scalable techniques for mining causal structures. Data Mining and Knowledge Discovery, 4(2/3), 163-192.
-
(2000)
Data Mining and Knowledge Discovery
, vol.4
, Issue.2-3
, pp. 163-192
-
-
Silverstein, C.1
Brin, S.2
Motwani, R.3
Ullman, J.4
-
67
-
-
0031742022
-
Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
-
Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K. et al. & Eisen, M. B. (1998). Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273-3297.
-
(1998)
Molecular Biology of the Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
-
68
-
-
0008538335
-
Causality from probability
-
J. Tiles, G. McKee, & G. Dean (eds.). London: Pittman
-
Spirtes, P., Glymour, C., & Scheines, R. (1990). Causality from probability. In J. Tiles, G. McKee, & G. Dean (eds.): Evolving knowledge in the natural and behavioral sciences (pp. 181-199). London: Pittman.
-
(1990)
Evolving Knowledge in the Natural and Behavioral Sciences
, pp. 181-199
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
69
-
-
0003614273
-
-
Springer/Verlag, first edition
-
Spirtes, P., Glymour, C. & Scheines, R. (1993). Causation, prediction, and search. Springer/Verlag, first edition.
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
70
-
-
0003614273
-
-
The MIT Press, second edition
-
Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search. The MIT Press, second edition.
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
72
-
-
29344472598
-
An algorithm for the generation of large Bayesian networks
-
Vanderbilt University
-
Statnikov, A., Tsamardinos, I., & Aliferis, C. F. (2003). An algorithm for the generation of large Bayesian networks. Technical Report DSL-03-01, Vanderbilt University.
-
(2003)
Technical Report
, vol.DSL-03-01
-
-
Statnikov, A.1
Tsamardinos, I.2
Aliferis, C.F.3
-
77
-
-
14244249973
-
Time and sample efficient discovery of Markov Blankets and direct causal relations
-
Vanderbilt University
-
Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003a). Time and sample efficient discovery of Markov Blankets and direct causal relations. Technical Report DSL-03-02, Vanderbilt University.
-
(2003)
Technical Report
, vol.DSL-03-02
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
-
78
-
-
28344447479
-
Scaling-up Bayesian network learning to thousands of variables using local learning technique
-
Dept. Biomedical Informatics, Vanderbilt University
-
Tsamardinos, I., Aliferis, C. F., Statnikov, A., & Brown. L. E. (2003a). Scaling-Up Bayesian network learning to thousands of variables using local Learning Technique. Technical Report DSL TR-03-02, Dept. Biomedical Informatics, Vanderbilt University.
-
(2003)
Technical Report
, vol.DSL TR-03-02
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
Brown, L.E.4
-
79
-
-
33746080013
-
Generating realistic large bayesian networks by tiling
-
to appear
-
Tsamardinos, I., Statnikov, A., Brown, L. E., and Aliferis, C. F. (2006) Generating realistic large bayesian networks by tiling. In The 19th International FLAIRS Conference (to appear).
-
(2006)
The 19th International FLAIRS Conference
-
-
Tsamardinos, I.1
Statnikov, A.2
Brown, L.E.3
Aliferis, C.F.4
|