메뉴 건너뛰기




Volumn 7523 LNAI, Issue PART 1, 2012, Pages 58-73

An experimental comparison of hybrid algorithms for Bayesian network structure learning

Author keywords

[No Author keywords available]

Indexed keywords

BAYESIAN NETWORK STRUCTURE; CONSTRAINT-BASED; DATA SETS; DATA SIZE; DIVIDE AND CONQUER; EMPIRICAL TEST; EXPERIMENTAL COMPARISON; GOODNESS OF FIT; HILL CLIMBING; HYBRID ALGORITHMS; MAX-MIN; NETWORK STRUCTURES; SOURCE CODES; STATE-OF-THE-ART ALGORITHMS;

EID: 84866874920     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-33460-3_9     Document Type: Conference Paper
Times cited : (23)

References (36)
  • 2
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
    • Aliferis, C.F., Statnikov, A.R., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation. Journal of Machine Learning Research 11, 171-234 (2010)
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 171-234
    • Aliferis, C.F.1    Statnikov, A.R.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 5
    • 77957127833 scopus 로고    scopus 로고
    • Analysis of lifestyle and metabolic predictors of visceral obesity with bayesian networks
    • Aussem, A., Tchernof, A., Rodrigues de Morais, S., Rome, S.: Analysis of lifestyle and metabolic predictors of visceral obesity with bayesian networks. BMC Bioinformatics 11, 487 (2010)
    • (2010) BMC Bioinformatics , vol.11 , pp. 487
    • Aussem, A.1    Tchernof, A.2    Rodrigues De Morais, S.3    Rome, S.4
  • 8
    • 77958066899 scopus 로고    scopus 로고
    • Causal and non-causal feature selection for ridge regression
    • Cawley, G.: Causal and non-causal feature selection for ridge regression. In: JMLR: Workshop and Conference Proceedings vol. 3 (2008)
    • (2008) JMLR: Workshop and Conference Proceedings , vol.3
    • Cawley, G.1
  • 9
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: An information-theory based approach
    • Cheng, J., Greiner, R., Kelly, J., Bell, D.A., Liu, W.: Learning Bayesian networks from data: An information-theory based approach. Artif. Intell. 137(1-2), 43-90 (2002)
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.A.4    Liu, W.5
  • 10
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D.M.: Optimal structure identification with greedy search. Journal of Machine Learning Research 3, 507-554 (2002)
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 11
    • 49549100459 scopus 로고    scopus 로고
    • Learning causal bayesian network structures from experimental data
    • Ellis, B., Wong, W.H.: Learning causal bayesian network structures from experimental data. Journal of the American Statistical Association 103, 778-789 (2008)
    • (2008) Journal of the American Statistical Association , vol.103 , pp. 778-789
    • Ellis, B.1    Wong, W.H.2
  • 12
    • 0002219642 scopus 로고    scopus 로고
    • Learning bayesian network structure from massive datasets: The"sparse candidate" algorithm
    • Laskey, K.B., Prade, H. (eds.) Morgan Kaufmann Publishers
    • Friedman, N.L., Nachman, I., Peér, D.: Learning bayesian network structure from massive datasets: the"sparse candidate" algorithm. In: Laskey, K.B., Prade, H. (eds.) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 21-30. Morgan Kaufmann Publishers (1999)
    • (1999) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence , pp. 21-30
    • Friedman, N.L.1    Nachman, I.2    Peér, D.3
  • 13
    • 34249761849 scopus 로고
    • Learning bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197-243 (1995)
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 14
    • 31844439894 scopus 로고    scopus 로고
    • Exact bayesian structure discovery in bayesian networks
    • Koivisto, M., Sood, K.: Exact bayesian structure discovery in bayesian networks. Journal of Machine Learning Research 5, 549-573 (2004)
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 549-573
    • Koivisto, M.1    Sood, K.2
  • 15
    • 76749103392 scopus 로고    scopus 로고
    • Optimal search on clustered structural constraint for learning bayesian network structure
    • Kojima, K., Perrier, E., Imoto, S., Miyano, S.: Optimal search on clustered structural constraint for learning bayesian network structure. Journal of Machine Learning Research 11, 285-310 (2010)
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 285-310
    • Kojima, K.1    Perrier, E.2    Imoto, S.3    Miyano, S.4
  • 20
    • 47249137432 scopus 로고    scopus 로고
    • Learning Gaussian Graphical Models of Gene Networks with False Discovery Rate Control
    • Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. Springer, Heidelberg
    • Peña, J.M.: Learning Gaussian Graphical Models of Gene Networks with False Discovery Rate Control. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 165-176. Springer, Heidelberg (2008)
    • (2008) LNCS , vol.4973 , pp. 165-176
    • Peña, J.M.1
  • 23
    • 77958041308 scopus 로고    scopus 로고
    • An Efficient and Scalable Algorithm for Local Bayesian Network Structure Discovery
    • Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. Springer, Heidelberg
    • de Morais, S.R., Aussem, A.: An Efficient and Scalable Algorithm for Local Bayesian Network Structure Discovery. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 164-179. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6323 , pp. 164-179
    • De Morais, S.R.1    Aussem, A.2
  • 24
    • 75749145760 scopus 로고    scopus 로고
    • A novel Markov boundary based feature subset selection algorithm
    • Rodrigues de Morais, S., Aussem, A.: A novel Markov boundary based feature subset selection algorithm. Neurocomputing 73, 578-584 (2010)
    • (2010) Neurocomputing , vol.73 , pp. 578-584
    • Rodrigues De Morais, S.1    Aussem, A.2
  • 25
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G.E.: Estimating the dimension of a model. Journal of Biomedical Informatics 6(2), 461-464 (1978)
    • (1978) Journal of Biomedical Informatics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.E.1
  • 26
    • 77955124773 scopus 로고    scopus 로고
    • Learning bayesian networks with the bnlearn R package
    • Scutari, M.: Learning bayesian networks with the bnlearn R package. Journal of Statistical Software 35(3), 1-22 (2010)
    • (2010) Journal of Statistical Software , vol.35 , Issue.3 , pp. 1-22
    • Scutari, M.1
  • 31
    • 84863304598 scopus 로고    scopus 로고
    • R: A language and environment for statistical computing
    • R Development Core Team. Vienna, Austria
    • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2010)
    • (2010) R Foundation for Statistical Computing
  • 33
    • 77958036957 scopus 로고    scopus 로고
    • Permutation Testing Improves Bayesian Network Learning
    • Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. Springer, Heidelberg
    • Tsamardinos, I., Borboudakis, G.: Permutation Testing Improves Bayesian Network Learning. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 322-337. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.6323 , pp. 322-337
    • Tsamardinos, I.1    Borboudakis, G.2
  • 35
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1), 31-78 (2006)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.