-
2
-
-
76749137632
-
Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
-
Aliferis, C.F., Statnikov, A.R., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation. Journal of Machine Learning Research 11, 171-234 (2010)
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 171-234
-
-
Aliferis, C.F.1
Statnikov, A.R.2
Tsamardinos, I.3
Mani, S.4
Koutsoukos, X.D.5
-
4
-
-
83555176366
-
Analysis of nasopharyngeal carcinoma risk factors with bayesian networks
-
Aussem, A., Rodrigues de Morais, S., Corbex, M.: Analysis of nasopharyngeal carcinoma risk factors with bayesian networks. Artificial Intelligence in Medicine 54(1) (2012)
-
(2012)
Artificial Intelligence in Medicine
, vol.54
, Issue.1
-
-
Aussem, A.1
Rodrigues De Morais, S.2
Corbex, M.3
-
5
-
-
77957127833
-
Analysis of lifestyle and metabolic predictors of visceral obesity with bayesian networks
-
Aussem, A., Tchernof, A., Rodrigues de Morais, S., Rome, S.: Analysis of lifestyle and metabolic predictors of visceral obesity with bayesian networks. BMC Bioinformatics 11, 487 (2010)
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 487
-
-
Aussem, A.1
Tchernof, A.2
Rodrigues De Morais, S.3
Rome, S.4
-
7
-
-
0001926525
-
Theory refinement on Bayesian networks
-
Morgan Kaufmann Publishers July
-
Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, San Mateo, CA, USA, pp. 52-60. Morgan Kaufmann Publishers (July 1991)
-
(1991)
Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, San Mateo, CA, USA
, pp. 52-60
-
-
Buntine, W.1
-
8
-
-
77958066899
-
Causal and non-causal feature selection for ridge regression
-
Cawley, G.: Causal and non-causal feature selection for ridge regression. In: JMLR: Workshop and Conference Proceedings vol. 3 (2008)
-
(2008)
JMLR: Workshop and Conference Proceedings
, vol.3
-
-
Cawley, G.1
-
9
-
-
0036567524
-
Learning Bayesian networks from data: An information-theory based approach
-
Cheng, J., Greiner, R., Kelly, J., Bell, D.A., Liu, W.: Learning Bayesian networks from data: An information-theory based approach. Artif. Intell. 137(1-2), 43-90 (2002)
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.A.4
Liu, W.5
-
10
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering, D.M.: Optimal structure identification with greedy search. Journal of Machine Learning Research 3, 507-554 (2002)
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
12
-
-
0002219642
-
Learning bayesian network structure from massive datasets: The"sparse candidate" algorithm
-
Laskey, K.B., Prade, H. (eds.) Morgan Kaufmann Publishers
-
Friedman, N.L., Nachman, I., Peér, D.: Learning bayesian network structure from massive datasets: the"sparse candidate" algorithm. In: Laskey, K.B., Prade, H. (eds.) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 21-30. Morgan Kaufmann Publishers (1999)
-
(1999)
Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence
, pp. 21-30
-
-
Friedman, N.L.1
Nachman, I.2
Peér, D.3
-
13
-
-
34249761849
-
Learning bayesian networks: The combination of knowledge and statistical data
-
Heckerman, D., Geiger, D., Chickering, D.M.: Learning bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197-243 (1995)
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
14
-
-
31844439894
-
Exact bayesian structure discovery in bayesian networks
-
Koivisto, M., Sood, K.: Exact bayesian structure discovery in bayesian networks. Journal of Machine Learning Research 5, 549-573 (2004)
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 549-573
-
-
Koivisto, M.1
Sood, K.2
-
15
-
-
76749103392
-
Optimal search on clustered structural constraint for learning bayesian network structure
-
Kojima, K., Perrier, E., Imoto, S., Miyano, S.: Optimal search on clustered structural constraint for learning bayesian network structure. Journal of Machine Learning Research 11, 285-310 (2010)
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 285-310
-
-
Kojima, K.1
Perrier, E.2
Imoto, S.3
Miyano, S.4
-
17
-
-
1942452317
-
Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
-
Fawcett, T., Mishra, N. (eds.)
-
Moore, A., Wong, W.-K.: Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning, ICML 2003 (August 2003)
-
Proceedings of the 20th International Conference on Machine Learning, ICML 2003 (August 2003)
-
-
Moore, A.1
Wong, W.-K.2
-
18
-
-
34249931694
-
Towards scalable and data efficient learning of Markov boundaries
-
Peña, J.M., Nilsson, R., Björkegren, J., Tegnér, J.: Towards scalable and data efficient learning of Markov boundaries. International Journal of Approximate Reasoning 45(2), 211-232 (2007)
-
(2007)
International Journal of Approximate Reasoning
, vol.45
, Issue.2
, pp. 211-232
-
-
Peña, J.M.1
Nilsson, R.2
Björkegren, J.3
Tegnér, J.4
-
20
-
-
47249137432
-
Learning Gaussian Graphical Models of Gene Networks with False Discovery Rate Control
-
Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. Springer, Heidelberg
-
Peña, J.M.: Learning Gaussian Graphical Models of Gene Networks with False Discovery Rate Control. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 165-176. Springer, Heidelberg (2008)
-
(2008)
LNCS
, vol.4973
, pp. 165-176
-
-
Peña, J.M.1
-
21
-
-
84856507856
-
Finding consensus bayesian network structures
-
Peña, J.: Finding consensus bayesian network structures. Journal of Artificial Intelligence Research 42, 661-687 (2012)
-
(2012)
Journal of Artificial Intelligence Research
, vol.42
, pp. 661-687
-
-
Peña, J.1
-
22
-
-
56349103181
-
Finding optimal bayesian network given a superstructure
-
Perrier, E., Imoto, S., Miyano, S.: Finding optimal bayesian network given a superstructure. Journal of Machine Learning Research 9, 2251-2286 (2008)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2251-2286
-
-
Perrier, E.1
Imoto, S.2
Miyano, S.3
-
23
-
-
77958041308
-
An Efficient and Scalable Algorithm for Local Bayesian Network Structure Discovery
-
Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. Springer, Heidelberg
-
de Morais, S.R., Aussem, A.: An Efficient and Scalable Algorithm for Local Bayesian Network Structure Discovery. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 164-179. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6323
, pp. 164-179
-
-
De Morais, S.R.1
Aussem, A.2
-
24
-
-
75749145760
-
A novel Markov boundary based feature subset selection algorithm
-
Rodrigues de Morais, S., Aussem, A.: A novel Markov boundary based feature subset selection algorithm. Neurocomputing 73, 578-584 (2010)
-
(2010)
Neurocomputing
, vol.73
, pp. 578-584
-
-
Rodrigues De Morais, S.1
Aussem, A.2
-
25
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G.E.: Estimating the dimension of a model. Journal of Biomedical Informatics 6(2), 461-464 (1978)
-
(1978)
Journal of Biomedical Informatics
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.E.1
-
26
-
-
77955124773
-
Learning bayesian networks with the bnlearn R package
-
Scutari, M.: Learning bayesian networks with the bnlearn R package. Journal of Statistical Software 35(3), 1-22 (2010)
-
(2010)
Journal of Statistical Software
, vol.35
, Issue.3
, pp. 1-22
-
-
Scutari, M.1
-
30
-
-
0003614273
-
-
2nd edn. The MIT Press
-
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search, 2nd edn. The MIT Press (2000)
-
(2000)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
31
-
-
84863304598
-
R: A language and environment for statistical computing
-
R Development Core Team. Vienna, Austria
-
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2010)
-
(2010)
R Foundation for Statistical Computing
-
-
-
32
-
-
1642397083
-
Algorithms for large scale Markov blanket discovery
-
Tsamardinos, I., Aliferis, C.F., Statnikov, A.R.: Algorithms for large scale Markov blanket discovery. In: Florida Artificial Intelligence Research Society Conference FLAIRS 2003, pp. 376-381 (2003)
-
(2003)
Florida Artificial Intelligence Research Society Conference FLAIRS 2003
, pp. 376-381
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.R.3
-
33
-
-
77958036957
-
Permutation Testing Improves Bayesian Network Learning
-
Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. Springer, Heidelberg
-
Tsamardinos, I., Borboudakis, G.: Permutation Testing Improves Bayesian Network Learning. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 322-337. Springer, Heidelberg (2010)
-
(2010)
LNCS
, vol.6323
, pp. 322-337
-
-
Tsamardinos, I.1
Borboudakis, G.2
-
35
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1), 31-78 (2006)
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|