메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 171-234

Local causal and markov blanket induction for causal discovery and feature selection for classification part I: Algorithms and empirical evaluation

Author keywords

Causal structure learning; Classification; Feature selection; Learning of Bayesian networks; Local causal discovery; Markov blanket induction

Indexed keywords

ALGORITHMIC FRAMEWORK; CAUSAL GRAPH; CAUSAL RELATIONSHIPS; CAUSAL STRUCTURE LEARNING; CLASSIFICATION; CLASSIFICATION FEATURES; EMPIRICAL EVALUATIONS; EXPERIMENTAL EVALUATION; FEATURE SELECTION; FEATURE SELECTION METHODS; FEATURE SETS; INTERPRETABILITY; LOCAL LEARNING; LOSS FUNCTIONS; MARKOV BLANKETS; NOVEL ALGORITHM; PREDICTIVITY; SMALL SAMPLES; SUFFICIENT CONDITIONS; VERY LARGE DATUM;

EID: 76749137632     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (500)

References (123)
  • 9
    • 76749122843 scopus 로고    scopus 로고
    • Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part II: Analysis and extensions
    • C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part II: Analysis and extensions. Journal of Machine Learning Research, 11:235-284, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 235-284
    • Aliferis, C.F.1    Statnikov, A.2    Tsamardinos, I.3    Mani, S.4    Koutsoukos, X.D.5
  • 10
    • 85044701386 scopus 로고    scopus 로고
    • Learning boolean queries for article quality filtering
    • Y. Aphinyanaphongs and C. F. Aliferis. Learning boolean queries for article quality filtering. Medinfo 2004., 11(Pt 1):263-267, 2004.
    • (2004) Medinfo 2004 , vol.11 , Issue.PART 1 , pp. 263-267
    • Aphinyanaphongs, Y.1    Aliferis, C.F.2
  • 11
    • 33745407892 scopus 로고    scopus 로고
    • A comparison of citation metrics to machine learning filters for the identification of high quality medline documents
    • Jul
    • Y. Aphinyanaphongs, A. Statnikov, and C. F. Aliferis. A comparison of citation metrics to machine learning filters for the identification of high quality medline documents. J.Am.Med.Inform.Assoc., 13(4):446-455, Jul 2006.
    • (2006) J.Am.Med.Inform.Assoc. , vol.13 , Issue.4 , pp. 446-455
    • Aphinyanaphongs, Y.1    Statnikov, A.2    Aliferis, C.F.3
  • 13
    • 0242498488 scopus 로고    scopus 로고
    • An analysis of four missing data treatment methods for supervised learning
    • G. E. A. P. A. Batista and M. C. Monard. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6):519-533, 2003.
    • (2003) Applied Artificial Intelligence , vol.17 , Issue.5-6 , pp. 519-533
    • Batista, G.E.A.P.A.1    Monard, M.C.2
  • 15
    • 0035733108 scopus 로고    scopus 로고
    • The control of the false discovery rate in multiple testing under dependency
    • Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. Ann.Statist, 29(4):1165-1188, 2001.
    • (2001) Ann.Statist , vol.29 , Issue.4 , pp. 1165-1188
    • Benjamini, Y.1    Yekutieli, D.2
  • 17
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 22
    • 0036567524 scopus 로고    scopus 로고
    • Learning bayesian networks from data: An information-theory based approach
    • J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning Bayesian networks from data: an information-theory based approach. Artificial Intelligence, 137(1):43-90, 2002a.
    • (2002) Artificial Intelligence , vol.137 , Issue.1 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 24
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of bayesian-network structures
    • D.M. Chickering. Learning equivalence classes of bayesian-network structures. Journal of Machine Learning Research, 2:445-498, 2002.
    • (2002) Journal of Machine Learning Research , vol.2 , pp. 445-498
    • Chickering, D.M.1
  • 25
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3(3):507-554, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.3 , pp. 507-554
    • Chickering, D.M.1
  • 27
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , Issue.3 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 29
    • 21944436304 scopus 로고    scopus 로고
    • A simple constraint-based algorithm for efficiently mining observational databases for causal relationships
    • G. F. Cooper. A simple constraint-based algorithm for efficiently mining observational databases for causal relationships. Data Mining and Knowledge Discovery, 1(2):203-224, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.2 , pp. 203-224
    • Cooper, G.F.1
  • 30
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-347, 1992.
    • (1992) Machine Learning , vol.9 , Issue.4 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 34
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
    • Sep
    • E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3): 837-845, Sep 1988.
    • (1988) Biometrics , vol.44 , Issue.3 , pp. 837-845
    • Delong, E.R.1    Delong, D.M.2    Clarke-Pearson, D.L.3
  • 35
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • R. Diaz-Uriarte and S. Alvarez de Andres. Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7:3, 2006.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    De Andres, S.A.2
  • 41
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genomewide expression patterns
    • Dec
    • M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genomewide expression patterns. Proc.Natl.Acad.Sci.U.S. A, 95(25):14863-14868, Dec 1998.
    • (1998) Proc.Natl.Acad.Sci.U.S.A , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 42
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348-1361, 2001.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1361
    • Fan, J.1    Li, R.2
  • 43
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6(1889):1918, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , Issue.1889 , pp. 1918
    • Fan, R.E.1    Chen, P.H.2    Lin, C.J.3
  • 46
    • 2942598504 scopus 로고    scopus 로고
    • Variable selecion in data mining: Building a predictive model for bankruptcy
    • D. P. Foster and R. A. Stine. Variable selecion in data mining: Building a predictive model for bankruptcy. Journal of the American Statistical Association, 99(466):303-314, 2004.
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.466 , pp. 303-314
    • Foster, D.P.1    Stine, R.A.2
  • 51
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • DOI 10.1089/106652700750050961
    • N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using Bayesian networks to analyze expression data. J Comput.Biol., 7(3-4):601-620, 2000. (Pubitemid 30944025)
    • (2000) Journal of Computational Biology , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 52
    • 3543109140 scopus 로고    scopus 로고
    • A feature selection newton method for support vector machine classification
    • G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine classification. Computational Optimization and Applications, 28(2):185-202, 2004.
    • (2004) Computational Optimization and Applications , vol.28 , Issue.2 , pp. 185-202
    • Fung, G.M.1    Mangasarian, O.L.2
  • 53
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Oct
    • T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906-914, Oct 2000.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 54
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • Jul
    • O. Gevaert, Smet F. De, D. Timmerman, Y. Moreau, and Moor B. De. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22(14):e184-e190, Jul 2006.
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Gevaert, O.1    De, S.F.2    Timmerman, D.3    Moreau, Y.4    De, M.B.5
  • 57
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3(1):1157-1182, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.1 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 58
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1):389-422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 64
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 66
    • 0034192615 scopus 로고    scopus 로고
    • The learning classifier system: An evolutionary computation approach to knowledge discovery in epidemiologic surveillance
    • May
    • J. H. Holmes, D. R. Durbin, and F. K. Winston. The learning classifier system: an evolutionary computation approach to knowledge discovery in epidemiologic surveillance. Artif.Intell.Med., 19(1):53-74, May 2000.
    • (2000) Artif.Intell.Med. , vol.19 , Issue.1 , pp. 53-74
    • Holmes, J.H.1    Durbin, D.R.2    Winston, F.K.3
  • 67
    • 76749152662 scopus 로고    scopus 로고
    • Modelling liver transplant survival: Comparing techniques of deriving predictor sets
    • Apr
    • N. Hoot, I. Feurer, C. W. Pinson, and C. F. Aliferis. Modelling liver transplant survival: comparing techniques of deriving predictor sets. Journal of Gastrointestinal Surgery, 9(4):563, Apr 2005.
    • (2005) Journal of Gastrointestinal Surgery , vol.9 , Issue.4 , pp. 563
    • Hoot, N.1    Feurer, I.2    Pinson, C.W.3    Aliferis, C.F.4
  • 70
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2): 273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 73
    • 0036139278 scopus 로고    scopus 로고
    • Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the ga/knn method
    • Dec
    • L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method. Bioinformatics, 17(12):1131-1142, Dec 2001.
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1131-1142
    • Li, L.1    Weinberg, C.R.2    Darden, T.A.3    Pedersen, L.G.4
  • 76
    • 0033257801 scopus 로고    scopus 로고
    • A study in causal discovery from population-based infant birth and death records
    • S. Mani and G. F. Cooper. A study in causal discovery from population-based infant birth and death records. Proceedings of the AMIA Annual Fall Symposium, 319, 1999.
    • (1999) Proceedings of the AMIA Annual Fall Symposium , vol.319
    • Mani, S.1    Cooper, G.F.2
  • 77
    • 85044705064 scopus 로고    scopus 로고
    • Causal discovery using a Bayesian local causal discovery algorithm
    • S. Mani and G. F. Cooper. Causal discovery using a Bayesian local causal discovery algorithm. Medinfo 2004., 11(Pt 1):731-735, 2004.
    • (2004) Medinfo 2004 , vol.11 , Issue.PART 1 , pp. 731-735
    • Mani, S.1    Cooper, G.F.2
  • 79
    • 33745620137 scopus 로고    scopus 로고
    • Learning causal Bayesian networks from observations and experiments: A decision theoretic approach
    • S. Meganck, P. Leray, and B. Manderick. Learning causal Bayesian networks from observations and experiments: A decision theoretic approach. Modeling Decisions in Artificial Intelligence, LNCS, pages 58-69, 2006.
    • (2006) Modeling Decisions in Artificial Intelligence, LNCS , pp. 58-69
    • Meganck, S.1    Leray, P.2    Manderick, B.3
  • 84
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • J. Peña, J. Bjorkegren, and J. Tegner. Growing Bayesian network models of gene networks from seed genes. Bioinformatics, 21(2):224-229, 2005a.
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 224-229
    • Peña, J.1    Bjorkegren, J.2    Tegner, J.3
  • 91
    • 10244230983 scopus 로고    scopus 로고
    • Reconstruction of gene networks using Bayesian learning and manipulation experiments
    • Nov
    • I. Pournara and L. Wernisch. Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics, 20(17):2934-2942, Nov 2004.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 2934-2942
    • Pournara, I.1    Wernisch, L.2
  • 92
    • 84890447445 scopus 로고    scopus 로고
    • Variable selection using SVM-based criteria
    • A. Rakotomamonjy. Variable selection using SVM-based criteria. Journal of Machine Learning Research, 3(7-8):1357-1370, 2003.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.7-8 , pp. 1357-1370
    • Rakotomamonjy, A.1
  • 96
    • 39049183773 scopus 로고    scopus 로고
    • Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning
    • A. Sboner and C. F. Aliferis. Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning. AMIA 2005 Annual Symposium Proceedings, pages 664-668, 2005.
    • AMIA 2005 Annual Symposium Proceedings , vol.2005 , pp. 664-668
    • Sboner, A.1    Aliferis, C.F.2
  • 97
    • 33044495254 scopus 로고    scopus 로고
    • PhD thesis, Ph.D.Thesis, Technischen Universitet Berlin, School of Computer Science
    • T. Scheffer. Error Estimation and Model Selection. PhD thesis, Ph.D.Thesis, Technischen Universitet Berlin, School of Computer Science, 1999.
    • (1999) Error Estimation and Model Selection
    • Scheffer, T.1
  • 99
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
    • Dec
    • P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol.Biol Cell, 9(12):3273-3297, Dec 1998.
    • (1998) Mol.Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 102
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Mar
    • A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631-643, Mar 2005a.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 103
    • 22544475586 scopus 로고    scopus 로고
    • GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
    • DOI 10.1016/j.ijmedinf.2005.05.002, PII S1386505605000523, MedInfo 2004
    • A. Statnikov, I. Tsamardinos, Y. Dosbayev, and C. F. Aliferis. Gems: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int.J.Med.Inform., 74 (7-8):491-503, Aug 2005b. (Pubitemid 41021913)
    • (2005) International Journal of Medical Informatics , vol.74 , Issue.7-8 , pp. 491-503
    • Statnikov, A.1    Tsamardinos, I.2    Dosbayev, Y.3    Aliferis, C.F.4
  • 115
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 116
    • 33746154240 scopus 로고    scopus 로고
    • The doubly regularized support vector machine
    • L.Wang, J. Zhu, and H. Zou. The doubly regularized support vector machine. Statistica Sinica, 16: 589-615, 2006. (Pubitemid 44085519)
    • (2006) Statistica Sinica , vol.16 , Issue.2 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 120
    • 3042632570 scopus 로고    scopus 로고
    • An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways
    • Jun
    • C. Yoo and G. F. Cooper. An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways. Artif.Intell.Med., 31(2):169-182, Jun 2004.
    • (2004) Artif.Intell.Med. , vol.31 , Issue.2 , pp. 169-182
    • Yoo, C.1    Cooper, G.F.2
  • 121
    • 0036790999 scopus 로고    scopus 로고
    • Transitive functional annotation by shortest-path analysis of gene expression data
    • X. Zhou, M. C. J. Kao, and W. H. Wong. Transitive functional annotation by shortest-path analysis of gene expression data. Proceedings of the National Academy of Sciences, 99(20):12783-12788, 2002.
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.20 , pp. 12783-12788
    • Zhou, X.1    Kao, M.C.J.2    Wong, W.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.