-
7
-
-
76749148934
-
-
Technical Report DSL 06-05
-
C. F. Aliferis, A. Statnikov, E. Kokkotou, P. P. Massion, and I. Tsamardinos. Local regulatorynetwork inducing algorithms for biomarker discovery from mass-throughput datasets. Technical Report DSL 06-05, 2006a.
-
(2006)
Local Regulatorynetwork Inducing Algorithms for Biomarker Discovery from Mass-throughput Datasets
-
-
Aliferis, C.F.1
Statnikov, A.2
Kokkotou, E.3
Massion, P.P.4
Tsamardinos, I.5
-
9
-
-
76749122843
-
Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part II: Analysis and extensions
-
C. F. Aliferis, A. Statnikov, I. Tsamardinos, S. Mani, and X. D. Koutsoukos. Local causal and Markov blanket induction for causal discovery and feature selection for classification. Part II: Analysis and extensions. Journal of Machine Learning Research, 11:235-284, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 235-284
-
-
Aliferis, C.F.1
Statnikov, A.2
Tsamardinos, I.3
Mani, S.4
Koutsoukos, X.D.5
-
10
-
-
85044701386
-
Learning boolean queries for article quality filtering
-
Y. Aphinyanaphongs and C. F. Aliferis. Learning boolean queries for article quality filtering. Medinfo 2004., 11(Pt 1):263-267, 2004.
-
(2004)
Medinfo 2004
, vol.11
, Issue.PART 1
, pp. 263-267
-
-
Aphinyanaphongs, Y.1
Aliferis, C.F.2
-
11
-
-
33745407892
-
A comparison of citation metrics to machine learning filters for the identification of high quality medline documents
-
Jul
-
Y. Aphinyanaphongs, A. Statnikov, and C. F. Aliferis. A comparison of citation metrics to machine learning filters for the identification of high quality medline documents. J.Am.Med.Inform.Assoc., 13(4):446-455, Jul 2006.
-
(2006)
J.Am.Med.Inform.Assoc.
, vol.13
, Issue.4
, pp. 446-455
-
-
Aphinyanaphongs, Y.1
Statnikov, A.2
Aliferis, C.F.3
-
12
-
-
57749192210
-
-
Technical Report, Center for Automated Learning and Discovery
-
X. Bai, C. Glymour, R. Padman, J. Ramsey, P. Spirtes, and F. Wimberly. PCX: Markov blanket classification for large data sets with few cases. Technical Report, Center for Automated Learning and Discovery, 2004.
-
(2004)
PCX: Markov Blanket Classification for Large Data Sets with Few Cases
-
-
Bai, X.1
Glymour, C.2
Padman, R.3
Ramsey, J.4
Spirtes, P.5
Wimberly, F.6
-
13
-
-
0242498488
-
An analysis of four missing data treatment methods for supervised learning
-
G. E. A. P. A. Batista and M. C. Monard. An analysis of four missing data treatment methods for supervised learning. Applied Artificial Intelligence, 17(5-6):519-533, 2003.
-
(2003)
Applied Artificial Intelligence
, vol.17
, Issue.5-6
, pp. 519-533
-
-
Batista, G.E.A.P.A.1
Monard, M.C.2
-
15
-
-
0035733108
-
The control of the false discovery rate in multiple testing under dependency
-
Y. Benjamini and D. Yekutieli. The control of the false discovery rate in multiple testing under dependency. Ann.Statist, 29(4):1165-1188, 2001.
-
(2001)
Ann.Statist
, vol.29
, Issue.4
, pp. 1165-1188
-
-
Benjamini, Y.1
Yekutieli, D.2
-
16
-
-
0035923521
-
Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses
-
Nov
-
A. Bhattacharjee, W. G. Richards, J. Staunton, C. Li, S. Monti, P. Vasa, C. Ladd, J. Beheshti, R. Bueno, M. Gillette, M. Loda, G. Weber, E. J. Mark, E. S. Lander, W. Wong, B. E. Johnson, T. R. Golub, D. J. Sugarbaker, and M. Meyerson. Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc.Natl.Acad.Sci.U.S.A, 98(24):13790-13795, Nov 2001.
-
(2001)
Proc.Natl.Acad.Sci.U.S.A
, vol.98
, Issue.24
, pp. 13790-13795
-
-
Bhattacharjee, A.1
Richards, W.G.2
Staunton, J.3
Li, C.4
Monti, S.5
Vasa, P.6
Ladd, C.7
Beheshti, J.8
Bueno, R.9
Gillette, M.10
Loda, M.11
Weber, G.12
Mark, E.J.13
Lander, E.S.14
Wong, W.15
Johnson, B.E.16
Golub, T.R.17
Sugarbaker, D.J.18
Meyerson, M.19
-
17
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
22
-
-
0036567524
-
Learning bayesian networks from data: An information-theory based approach
-
J. Cheng, R. Greiner, J. Kelly, D. Bell, and W. Liu. Learning Bayesian networks from data: an information-theory based approach. Artificial Intelligence, 137(1):43-90, 2002a.
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
23
-
-
1442305691
-
Kdd cup 2001 report
-
J. Cheng, C. Hatzis, H. Hayashi, M. A. Krogel, S. Morishita, D. Page, and J. Sese. Kdd cup 2001 report. ACM SIGKDD Explorations Newsletter, 3(2):47-64, 2002b.
-
(2002)
ACM SIGKDD Explorations Newsletter
, vol.3
, Issue.2
, pp. 47-64
-
-
Cheng, J.1
Hatzis, C.2
Hayashi, H.3
Krogel, M.A.4
Morishita, S.5
Page, D.6
Sese, J.7
-
24
-
-
0042496103
-
Learning equivalence classes of bayesian-network structures
-
D.M. Chickering. Learning equivalence classes of bayesian-network structures. Journal of Machine Learning Research, 2:445-498, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 445-498
-
-
Chickering, D.M.1
-
25
-
-
0042967741
-
Optimal structure identification with greedy search
-
D.M. Chickering. Optimal structure identification with greedy search. Journal of Machine Learning Research, 3(3):507-554, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.3
, pp. 507-554
-
-
Chickering, D.M.1
-
27
-
-
84933530882
-
Approximating discrete probability distributions with dependence trees
-
C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3):462-467, 1968.
-
(1968)
IEEE Transactions on Information Theory
, vol.14
, Issue.3
, pp. 462-467
-
-
Chow, C.1
Liu, C.2
-
28
-
-
2942581832
-
High-resolution serum proteomic features for ovarian cancer detection
-
Jun
-
T. P. Conrads, V. A. Fusaro, S. Ross, D. Johann, V. Rajapakse, B. A. Hitt, S. M. Steinberg, E. C. Kohn, D. A. Fishman, G. Whitely, J. C. Barrett, L. A. Liotta, E. F. I. I. I. Petricoin, and T. D. Veenstra. High-resolution serum proteomic features for ovarian cancer detection. Endocr.Relat Cancer, 11(2):163-178, Jun 2004.
-
(2004)
Endocr.Relat Cancer
, vol.11
, Issue.2
, pp. 163-178
-
-
Conrads, T.P.1
Fusaro, V.A.2
Ross, S.3
Johann, D.4
Rajapakse, V.5
Hitt, B.A.6
Steinberg, S.M.7
Kohn, E.C.8
Fishman, D.A.9
Whitely, G.10
Barrett, J.C.11
Liotta, L.A.12
Petricoin, E.F.I.I.I.13
Veenstra, T.D.14
-
29
-
-
21944436304
-
A simple constraint-based algorithm for efficiently mining observational databases for causal relationships
-
G. F. Cooper. A simple constraint-based algorithm for efficiently mining observational databases for causal relationships. Data Mining and Knowledge Discovery, 1(2):203-224, 1997.
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.2
, pp. 203-224
-
-
Cooper, G.F.1
-
30
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9(4):309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, Issue.4
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
32
-
-
0031080885
-
An evaluation of machine-learning methods for predicting pneumonia mortality
-
G. F. Cooper, C. F. Aliferis, R. Ambrosino, J. Aronis, B. G. Buchanan, R. Caruana, M. J. Fine, C. Glymour, G. Gordon, and B. H. Hanusa. An evaluation of machine-learning methods for predicting pneumonia mortality. Artificial Intelligence in Medicine, 9(2):107-138, 1997.
-
(1997)
Artificial Intelligence in Medicine
, vol.9
, Issue.2
, pp. 107-138
-
-
Cooper, G.F.1
Aliferis, C.F.2
Ambrosino, R.3
Aronis, J.4
Buchanan, B.G.5
Caruana, R.6
Fine, M.J.7
Glymour, C.8
Gordon, G.9
Hanusa, B.H.10
-
34
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
Sep
-
E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics, 44(3): 837-845, Sep 1988.
-
(1988)
Biometrics
, vol.44
, Issue.3
, pp. 837-845
-
-
Delong, E.R.1
Delong, D.M.2
Clarke-Pearson, D.L.3
-
35
-
-
30644464444
-
Gene selection and classification of microarray data using random forest
-
R. Diaz-Uriarte and S. Alvarez de Andres. Gene selection and classification of microarray data using random forest. BMC Bioinformatics, 7:3, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Diaz-Uriarte, R.1
De Andres, S.A.2
-
37
-
-
36749001490
-
Extracting drug-drug interaction articles from medline to improve the content of drug databases
-
S. Duda, C. F. Aliferis, R. Miller, A. Statnikov, and K. Johnson. Extracting drug-drug interaction articles from medline to improve the content of drug databases. AMIA 2005 Annual Symposium Proceedings, pages 216-220, 2005.
-
AMIA 2005 Annual Symposium Proceedings
, vol.2005
, pp. 216-220
-
-
Duda, S.1
Aliferis, C.F.2
Miller, R.3
Statnikov, A.4
Johnson, K.5
-
41
-
-
0032441150
-
Cluster analysis and display of genomewide expression patterns
-
Dec
-
M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and display of genomewide expression patterns. Proc.Natl.Acad.Sci.U.S. A, 95(25):14863-14868, Dec 1998.
-
(1998)
Proc.Natl.Acad.Sci.U.S.A
, vol.95
, Issue.25
, pp. 14863-14868
-
-
Eisen, M.B.1
Spellman, P.T.2
Brown, P.O.3
Botstein, D.4
-
42
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348-1361, 2001.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1361
-
-
Fan, J.1
Li, R.2
-
43
-
-
29144499905
-
Working set selection using second order information for training support vector machines
-
R. E. Fan, P. H. Chen, and C. J. Lin. Working set selection using second order information for training support vector machines. Journal of Machine Learning Research, 6(1889):1918, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, Issue.1889
, pp. 1918
-
-
Fan, R.E.1
Chen, P.H.2
Lin, C.J.3
-
44
-
-
39049179180
-
Formative evaluation of a prototype system for automated analysis of mass spectrometry data
-
N. Fananapazir, M. Li, D. Spentzos, and C. F. Aliferis. Formative evaluation of a prototype system for automated analysis of mass spectrometry data. AMIA 2005 Annual Symposium Proceedings, pages 241-245, 2005.
-
(2005)
AMIA 2005 Annual Symposium Proceedings
, pp. 241-245
-
-
Fananapazir, N.1
Li, M.2
Spentzos, D.3
Aliferis, C.F.4
-
46
-
-
2942598504
-
Variable selecion in data mining: Building a predictive model for bankruptcy
-
D. P. Foster and R. A. Stine. Variable selecion in data mining: Building a predictive model for bankruptcy. Journal of the American Statistical Association, 99(466):303-314, 2004.
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.466
, pp. 303-314
-
-
Foster, D.P.1
Stine, R.A.2
-
47
-
-
21244449935
-
Identifying Markov blankets with decision tree induction
-
L. Frey, D. Fisher, I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Identifying Markov blankets with decision tree induction. Proceedings of the Third IEEE International Conference on Data Mining (ICDM), 2003.
-
(2003)
Proceedings of the Third IEEE International Conference on Data Mining (ICDM)
-
-
Frey, L.1
Fisher, D.2
Tsamardinos, I.3
Aliferis, C.F.4
Statnikov, A.5
-
48
-
-
0031276011
-
Bayesian network classifiers
-
N. Friedman, D. Geiger, and M. Goldszmidt. Bayesian network classifiers. Machine Learning, 29 (2):131-163, 1997.
-
(1997)
Machine Learning
, vol.29
, Issue.2
, pp. 131-163
-
-
Friedman, N.1
Geiger, D.2
Goldszmidt, M.3
-
51
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
DOI 10.1089/106652700750050961
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er. Using Bayesian networks to analyze expression data. J Comput.Biol., 7(3-4):601-620, 2000. (Pubitemid 30944025)
-
(2000)
Journal of Computational Biology
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
52
-
-
3543109140
-
A feature selection newton method for support vector machine classification
-
G. M. Fung and O. L. Mangasarian. A feature selection newton method for support vector machine classification. Computational Optimization and Applications, 28(2):185-202, 2004.
-
(2004)
Computational Optimization and Applications
, vol.28
, Issue.2
, pp. 185-202
-
-
Fung, G.M.1
Mangasarian, O.L.2
-
53
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Oct
-
T. S. Furey, N. Cristianini, N. Duffy, D. W. Bednarski, M. Schummer, and D. Haussler. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics, 16(10):906-914, Oct 2000.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
54
-
-
33747891871
-
Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
-
Jul
-
O. Gevaert, Smet F. De, D. Timmerman, Y. Moreau, and Moor B. De. Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics, 22(14):e184-e190, Jul 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.14
-
-
Gevaert, O.1
De, S.F.2
Timmerman, D.3
Moreau, Y.4
De, M.B.5
-
55
-
-
0004194893
-
-
AAAI Press, Menlo Park, Calif
-
C. N. Glymour and G. F. Cooper. Computation, Causation, and Discovery. AAAI Press, Menlo Park, Calif, 1999.
-
(1999)
Computation, Causation, and Discovery
-
-
Glymour, C.N.1
Cooper, G.F.2
-
57
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3(1):1157-1182, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.1
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
58
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1):389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
59
-
-
33745891586
-
-
Springer-Verlag, Berlin
-
I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh. Feature Extraction: Foundations and Applications. Springer-Verlag, Berlin, 2006a.
-
(2006)
Feature Extraction: Foundations and Applications
-
-
Guyon, I.1
Gunn, S.2
Nikravesh, M.3
Zadeh, L.A.4
-
60
-
-
76749167392
-
-
Technical report
-
I. Guyon, J. Li, T. Mader, P. A. Pletscher, G. Schneider, and M. Uhr. Feature selection with the clop package. Technical report, http://clopinet.com/ isabelle/Projects/ETH/TM-fextract-class.pdf, 2006b.
-
(2006)
Feature Selection with the Clop Package
-
-
Guyon, I.1
Li, J.2
Mader, T.3
Pletscher, P.A.4
Schneider, G.5
Uhr, M.6
-
64
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
65
-
-
85102332811
-
-
Wiley, New York, NY, USA
-
M. Hollander and D. Wolfe. Nonparametric Statistical Methods, volume 2nd. Wiley, New York, NY, USA, 1999.
-
(1999)
Nonparametric Statistical Methods
, vol.2
-
-
Hollander, M.1
Wolfe, D.2
-
66
-
-
0034192615
-
The learning classifier system: An evolutionary computation approach to knowledge discovery in epidemiologic surveillance
-
May
-
J. H. Holmes, D. R. Durbin, and F. K. Winston. The learning classifier system: an evolutionary computation approach to knowledge discovery in epidemiologic surveillance. Artif.Intell.Med., 19(1):53-74, May 2000.
-
(2000)
Artif.Intell.Med.
, vol.19
, Issue.1
, pp. 53-74
-
-
Holmes, J.H.1
Durbin, D.R.2
Winston, F.K.3
-
67
-
-
76749152662
-
Modelling liver transplant survival: Comparing techniques of deriving predictor sets
-
Apr
-
N. Hoot, I. Feurer, C. W. Pinson, and C. F. Aliferis. Modelling liver transplant survival: comparing techniques of deriving predictor sets. Journal of Gastrointestinal Surgery, 9(4):563, Apr 2005.
-
(2005)
Journal of Gastrointestinal Surgery
, vol.9
, Issue.4
, pp. 563
-
-
Hoot, N.1
Feurer, I.2
Pinson, C.W.3
Aliferis, C.F.4
-
70
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2): 273-324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
73
-
-
0036139278
-
Gene selection for sample classification based on gene expression data: Study of sensitivity to choice of parameters of the ga/knn method
-
Dec
-
L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen. Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the ga/knn method. Bioinformatics, 17(12):1131-1142, Dec 2001.
-
(2001)
Bioinformatics
, vol.17
, Issue.12
, pp. 1131-1142
-
-
Li, L.1
Weinberg, C.R.2
Darden, T.A.3
Pedersen, L.G.4
-
75
-
-
0141688369
-
Discretization: An enabling technique
-
H. Liu, F. Hussain, C. L. Tan, and M. Dash. Discretization: an enabling technique. Data Mining and Knowledge Discovery, 6(4):393-423, 2002.
-
(2002)
Data Mining and Knowledge Discovery
, vol.6
, Issue.4
, pp. 393-423
-
-
Liu, H.1
Hussain, F.2
Tan, C.L.3
Dash, M.4
-
76
-
-
0033257801
-
A study in causal discovery from population-based infant birth and death records
-
S. Mani and G. F. Cooper. A study in causal discovery from population-based infant birth and death records. Proceedings of the AMIA Annual Fall Symposium, 319, 1999.
-
(1999)
Proceedings of the AMIA Annual Fall Symposium
, vol.319
-
-
Mani, S.1
Cooper, G.F.2
-
77
-
-
85044705064
-
Causal discovery using a Bayesian local causal discovery algorithm
-
S. Mani and G. F. Cooper. Causal discovery using a Bayesian local causal discovery algorithm. Medinfo 2004., 11(Pt 1):731-735, 2004.
-
(2004)
Medinfo 2004
, vol.11
, Issue.PART 1
, pp. 731-735
-
-
Mani, S.1
Cooper, G.F.2
-
79
-
-
33745620137
-
Learning causal Bayesian networks from observations and experiments: A decision theoretic approach
-
S. Meganck, P. Leray, and B. Manderick. Learning causal Bayesian networks from observations and experiments: A decision theoretic approach. Modeling Decisions in Artificial Intelligence, LNCS, pages 58-69, 2006.
-
(2006)
Modeling Decisions in Artificial Intelligence, LNCS
, pp. 58-69
-
-
Meganck, S.1
Leray, P.2
Manderick, B.3
-
84
-
-
27544503451
-
Growing Bayesian network models of gene networks from seed genes
-
J. Peña, J. Bjorkegren, and J. Tegner. Growing Bayesian network models of gene networks from seed genes. Bioinformatics, 21(2):224-229, 2005a.
-
(2005)
Bioinformatics
, vol.21
, Issue.2
, pp. 224-229
-
-
Peña, J.1
Bjorkegren, J.2
Tegner, J.3
-
86
-
-
34249931694
-
Towards scalable and data efficient learning of Markov boundaries
-
J. Peña, R. Nilsson, J. Bjorkegren, and J. Tegnér. Towards scalable and data efficient learning of Markov boundaries. International Journal of Approximate Reasoning, 45(2):211-232, 2007.
-
(2007)
International Journal of Approximate Reasoning
, vol.45
, Issue.2
, pp. 211-232
-
-
Peña, J.1
Nilsson, R.2
Bjorkegren, J.3
Tegnér, J.4
-
88
-
-
0003398906
-
-
Cambridge University Press, Cambridge, U.K
-
J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, U.K, 2000.
-
(2000)
Causality: Models, Reasoning, and Inference
-
-
Pearl, J.1
-
91
-
-
10244230983
-
Reconstruction of gene networks using Bayesian learning and manipulation experiments
-
Nov
-
I. Pournara and L. Wernisch. Reconstruction of gene networks using Bayesian learning and manipulation experiments. Bioinformatics, 20(17):2934-2942, Nov 2004.
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 2934-2942
-
-
Pournara, I.1
Wernisch, L.2
-
92
-
-
84890447445
-
Variable selection using SVM-based criteria
-
A. Rakotomamonjy. Variable selection using SVM-based criteria. Journal of Machine Learning Research, 3(7-8):1357-1370, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.7-8
, pp. 1357-1370
-
-
Rakotomamonjy, A.1
-
95
-
-
0037142053
-
The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma
-
Jun
-
A. Rosenwald, G. Wright, W. C. Chan, J. M. Connors, E. Campo, R. I. Fisher, R. D. Gascoyne, H. K.Muller-Hermelink, E. B. Smeland, J.M. Giltnane, E.M. Hurt, H. Zhao, L. Averett, L. Yang, W. H. Wilson, E. S. Jaffe, R. Simon, R. D. Klausner, J. Powell, P. L. Duffey, D. L. Longo, T. C. Greiner, D. D. Weisenburger, W. G. Sanger, B. J. Dave, J. C. Lynch, J. Vose, J. O. Armitage, E. Montserrat, A. Lopez-Guillermo, T. M. Grogan, T. P. Miller, M. LeBlanc, G. Ott, S. Kvaloy, J. Delabie, H. Holte, P. Krajci, T. Stokke, and L. M. Staudt. The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma. N.Engl.J Med., 346(25): 1937-1947, Jun 2002.
-
(2002)
N.Engl.J Med.
, vol.346
, Issue.25
, pp. 1937-1947
-
-
Rosenwald, A.1
Wright, G.2
Chan, W.C.3
Connors, J.M.4
Campo, E.5
Fisher, R.I.6
Gascoyne, R.D.7
Muller-Hermelink, H.K.8
Smeland, E.B.9
Giltnane, J.M.10
Hurt, E.M.11
Zhao, H.12
Averett, L.13
Yang, L.14
Wilson, W.H.15
Jaffe, E.S.16
Simon, R.17
Klausner, R.D.18
Powell, J.19
Duffey, P.L.20
Longo, D.L.21
Greiner, T.C.22
Weisenburger, D.D.23
Sanger, W.G.24
Dave, B.J.25
Lynch, J.C.26
Vose, J.27
Armitage, J.O.28
Montserrat, E.29
Lopez-Guillermo, A.30
Grogan, T.M.31
Miller, T.P.32
Leblanc, M.33
Ott, G.34
Kvaloy, S.35
Delabie, J.36
Holte, H.37
Krajci, P.38
Stokke, T.39
Staudt, L.M.40
more..
-
96
-
-
39049183773
-
Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning
-
A. Sboner and C. F. Aliferis. Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning. AMIA 2005 Annual Symposium Proceedings, pages 664-668, 2005.
-
AMIA 2005 Annual Symposium Proceedings
, vol.2005
, pp. 664-668
-
-
Sboner, A.1
Aliferis, C.F.2
-
97
-
-
33044495254
-
-
PhD thesis, Ph.D.Thesis, Technischen Universitet Berlin, School of Computer Science
-
T. Scheffer. Error Estimation and Model Selection. PhD thesis, Ph.D.Thesis, Technischen Universitet Berlin, School of Computer Science, 1999.
-
(1999)
Error Estimation and Model Selection
-
-
Scheffer, T.1
-
98
-
-
23044519608
-
Scalable techniques for mining causal structures
-
C. Silverstein, S. Brin, R.Motwani, and J. Ullman. Scalable techniques for mining causal structures. Data Mining and Knowledge Discovery, 4(2):163-192, 2000.
-
(2000)
Data Mining and Knowledge Discovery
, vol.4
, Issue.2
, pp. 163-192
-
-
Silverstein, C.1
Brin, S.2
Motwani, R.3
Ullman, J.4
-
99
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization
-
Dec
-
P. T. Spellman, G. Sherlock, M. Q. Zhang, V. R. Iyer, K. Anders, M. B. Eisen, P. O. Brown, D. Botstein, and B. Futcher. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Mol.Biol Cell, 9(12):3273-3297, Dec 1998.
-
(1998)
Mol.Biol Cell
, vol.9
, Issue.12
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
100
-
-
0003614273
-
-
MIT Press, Cambridge, Mass
-
P. Spirtes, C. N. Glymour, and R. Scheines. Causation, Prediction, and Search, volume 2nd. MIT Press, Cambridge, Mass, 2000.
-
(2000)
Causation, Prediction, and Search
, vol.2
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
-
102
-
-
15844413351
-
A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
-
Mar
-
A. Statnikov, C. F. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 21(5):631-643, Mar 2005a.
-
(2005)
Bioinformatics
, vol.21
, Issue.5
, pp. 631-643
-
-
Statnikov, A.1
Aliferis, C.F.2
Tsamardinos, I.3
Hardin, D.4
Levy, S.5
-
103
-
-
22544475586
-
GEMS: A system for automated cancer diagnosis and biomarker discovery from microarray gene expression data
-
DOI 10.1016/j.ijmedinf.2005.05.002, PII S1386505605000523, MedInfo 2004
-
A. Statnikov, I. Tsamardinos, Y. Dosbayev, and C. F. Aliferis. Gems: a system for automated cancer diagnosis and biomarker discovery from microarray gene expression data. Int.J.Med.Inform., 74 (7-8):491-503, Aug 2005b. (Pubitemid 41021913)
-
(2005)
International Journal of Medical Informatics
, vol.74
, Issue.7-8
, pp. 491-503
-
-
Statnikov, A.1
Tsamardinos, I.2
Dosbayev, Y.3
Aliferis, C.F.4
-
113
-
-
28344447479
-
-
Technical Report DSL 03-02
-
I. Tsamardinos, C. F. Aliferis, A. Statnikov, and L. E. Brown. Scaling-up Bayesian network learning to thousands of variables using local learning technique. Technical Report DSL 03-02, 12, 2003c.
-
(2003)
Scaling-up Bayesian Network Learning to Thousands of Variables Using Local Learning Technique
, vol.12
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
Brown, L.E.4
-
115
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
I. Tsamardinos, L. E. Brown, and C. F. Aliferis. The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning, 65(1):31-78, 2006.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
116
-
-
33746154240
-
The doubly regularized support vector machine
-
L.Wang, J. Zhu, and H. Zou. The doubly regularized support vector machine. Statistica Sinica, 16: 589-615, 2006. (Pubitemid 44085519)
-
(2006)
Statistica Sinica
, vol.16
, Issue.2
, pp. 589-615
-
-
Wang, L.1
Zhu, J.2
Zou, H.3
-
117
-
-
13844310310
-
Geneexpression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
Feb
-
Y.Wang, J. G. Klijn, Y. Zhang, A.M. Sieuwerts,M. P. Look, F. Yang, D. Talantov,M. Timmermans, M. E. Meijer-van Gelder, J. Yu, T. Jatkoe, E. M. Berns, D. Atkins, and J. A. Foekens. Geneexpression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365(9460):671-679, Feb 2005.
-
(2005)
Lancet
, vol.365
, Issue.9460
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.2
Zhang, Y.3
Sieuwerts, A.M.4
Look, M.P.5
Yang, F.6
Talantov, D.7
Timmermans, M.8
Meijer-Van Gelder, M.E.9
Yu, J.10
Jatkoe, T.11
Berns, E.M.12
Atkins, D.13
Foekens, J.A.14
-
118
-
-
84890520049
-
Use of the zero-norm with linear models and kernel methods
-
J. Weston, A. Elisseeff, B. Scholkopf, and M. Tipping. Use of the zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3(7):1439-1461, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.7
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Scholkopf, B.3
Tipping, M.4
-
120
-
-
3042632570
-
An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways
-
Jun
-
C. Yoo and G. F. Cooper. An evaluation of a system that recommends microarray experiments to perform to discover gene-regulation pathways. Artif.Intell.Med., 31(2):169-182, Jun 2004.
-
(2004)
Artif.Intell.Med.
, vol.31
, Issue.2
, pp. 169-182
-
-
Yoo, C.1
Cooper, G.F.2
-
121
-
-
0036790999
-
Transitive functional annotation by shortest-path analysis of gene expression data
-
X. Zhou, M. C. J. Kao, and W. H. Wong. Transitive functional annotation by shortest-path analysis of gene expression data. Proceedings of the National Academy of Sciences, 99(20):12783-12788, 2002.
-
(2002)
Proceedings of the National Academy of Sciences
, vol.99
, Issue.20
, pp. 12783-12788
-
-
Zhou, X.1
Kao, M.C.J.2
Wong, W.H.3
-
122
-
-
84899024917
-
1-norm support vector machines
-
J. Zhu, S. Rosset, T. Hastie, and R. Tibshirani. 1-norm support vector machines. Advances in Neural Information Processing Systems (NIPS), 16, 2004.
-
(2004)
Advances in Neural Information Processing Systems (NIPS)
, vol.16
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
|