메뉴 건너뛰기




Volumn 6323 LNAI, Issue PART 3, 2010, Pages 164-179

An efficient and scalable algorithm for local bayesian network structure discovery

Author keywords

Bayesian network structure learning; constraint based methods; feature selection

Indexed keywords

BAYESIAN NETWORK STRUCTURE; CONSTRAINT-BASED; DIMENSIONALITY REDUCTION; DIVIDE AND CONQUER; DRUG DESIGN; EMPIRICAL EXPERIMENTS; FEATURE SELECTION; LARGE NEIGHBORHOOD; REAL WORLD DATA; RUNTIMES; SAMPLE SIZES; SCALABLE ALGORITHMS;

EID: 77958041308     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15939-8_11     Document Type: Conference Paper
Times cited : (17)

References (21)
  • 4
    • 77958066899 scopus 로고    scopus 로고
    • Causal and non-causal feature selection for ridge regression
    • Cawley, G.: Causal and non-causal feature selection for ridge regression. In: JMLR: Workshop and Conference Proceedings, vol. 3 (2008)
    • (2008) JMLR: Workshop and Conference Proceedings , vol.3
    • Cawley, G.1
  • 6
    • 0042496103 scopus 로고    scopus 로고
    • Learning equivalence classes of bayesian-network structures
    • Chickering, D.: Learning equivalence classes of bayesian-network structures. Ma-chine Learning 2, 445-498 (2002)
    • (2002) Machine Learning , vol.2 , pp. 445-498
    • Chickering, D.1
  • 7
    • 0002219642 scopus 로고    scopus 로고
    • Learning bayesian network structure from massive datasets: The "sparse candidate" algorithm
    • Laskey, K.B., Prade, H. (eds.) Morgan Kaufmann Publishers, San Francisco
    • Friedman, N.L., Nachman, I., Pe'er, D.: Learning bayesian network structure from massive datasets: the "sparse candidate" algorithm. In: Laskey, K.B., Prade, H. (eds.) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, pp. 21-30. Morgan Kaufmann Publishers, San Francisco (1999)
    • (1999) Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence , pp. 21-30
    • Friedman, N.L.1    Nachman, I.2    Pe'Er, D.3
  • 14
    • 47249137432 scopus 로고    scopus 로고
    • Learning gaussian graphical models ofgene networks with false discovery rate control
    • Marchiori, E., Moore, J.H. (eds.) Springer, Heidelberg
    • Peña, J.: Learning gaussian graphical models ofgene networks with false discovery rate control. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973, pp. 165-176. Springer, Heidelberg (2008)
    • (2008) EvoBIO 2008. LNCS , vol.4973 , pp. 165-176
    • Peña, J.1
  • 15
    • 56049103605 scopus 로고    scopus 로고
    • A novel scalable and data efficient feature subset selection algorithm
    • Daelemans, W., Goethals, B., Morik, K. (eds.) Springer, Heidelberg
    • Rodrigues de Morais, S., Aussem, A.: A novel scalable and data efficient feature subset selection algorithm. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212, pp. 298-312. Springer, Heidelberg (2008)
    • (2008) ECML PKDD 2008, Part II. LNCS (LNAI) , vol.5212 , pp. 298-312
    • Rodrigues De Morais, S.1    Aussem, A.2
  • 16
    • 75749145760 scopus 로고    scopus 로고
    • A novel Markov boundary based feature subset selection algorithm
    • Rodrigues de Morais, S., Aussem, A.: A novel Markov boundary based feature subset selection algorithm. Neurocomputing 73, 578-584 (2010)
    • (2010) Neurocomputing , vol.73 , pp. 578-584
    • Rodrigues De Morais, S.1    Aussem, A.2
  • 17
    • 84887014299 scopus 로고    scopus 로고
    • Handling almost-deterministic relationships in constraint-based Bayesian network discovery: Application to can-cer risk factor identification
    • Rodrigues de Morais, S., Aussem, A., Corbex, M.: Handling almost-deterministic relationships in constraint-based Bayesian network discovery: Application to can-cer risk factor identification. In: 16th European Symposium on Artificial Neural Networks ESANN'08, pp. 101-106 (2008)
    • (2008) 16th European Symposium on Artificial Neural Networks ESANN'08 , pp. 101-106
    • Rodrigues De Morais, S.1    Aussem, A.2    Corbex, M.3
  • 20
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Machine Learning 65(1), 31-78 (2006)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.