메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 1287-1330

Large-sample learning of Bayesian networks is NP-hard

Author keywords

Large sample data; Learning bayesian networks; NP hard; Search complexity

Indexed keywords

ALGORITHMS; COMPLEX NETWORKS; COMPUTATIONAL COMPLEXITY; LEARNING ALGORITHMS;

EID: 33646107783     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (638)

References (17)
  • 2
    • 0002013121 scopus 로고
    • A transformational characterization of Bayesian network structures
    • Hanks, S. and Besnard, P., editors, Montreal, QU, Morgan Kaufmann
    • Chickering, D. M. (1995). A transformational characterization of Bayesian network structures. In Hanks, S. and Besnard, P., editors, Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pages 87-98. Morgan Kaufmann.
    • (1995) Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence , pp. 87-98
    • Chickering, D.M.1
  • 3
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-Complete
    • Fisher, D. and Lenz, H., editors, Springer-Verlag
    • Chickering, D. M. (1996). Learning Bayesian networks is NP-Complete. In Fisher, D. and Lenz, H., editors, Learning from Data: Artificial Intelligence and Statistics V, pages 121-130. Springer-Verlag.
    • (1996) Learning from Data: Artificial Intelligence and Statistics V , pp. 121-130
    • Chickering, D.M.1
  • 4
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of Machine Learning Research, 3:507-554.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 8
    • 0012658765 scopus 로고
    • Some NP-complete problems on graphs
    • Johns Hopkins University, Baltimore, MD
    • Gavril, F. (1977). Some NP-complete problems on graphs. In Proc. 11th Conf. on Information Sciences and Systems, Johns Hopkins University, pages 91-95. Baltimore, MD.
    • (1977) Proc. 11th Conf. on Information Sciences and Systems , pp. 91-95
    • Gavril, F.1
  • 10
    • 0039766073 scopus 로고
    • Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions
    • Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities. i. multivariate totally positive distributions. Journal of Multivariate Analysis, 10:467-498.
    • (1980) Journal of Multivariate Analysis , vol.10 , pp. 467-498
    • Karlin, S.1    Rinott, Y.2
  • 12
  • 16
    • 0041955878 scopus 로고    scopus 로고
    • Maximum likelihood bounded tree-width Markov networks
    • Breese, J. and Koller, D., editors, Seattle, WA, Morgan Kaufmann
    • Srebro, N. (2001). Maximum likelihood bounded tree-width Markov networks. In Breese, J. and Koller, D., editors, Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, pages 504-511. Morgan Kaufmann.
    • (2001) Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence , pp. 504-511
    • Srebro, N.1
  • 17
    • 0025471633 scopus 로고
    • Fundamental concepts of qualitative probabilistic networks
    • Wellman, M. P. (1990). Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence, 44:257-303.
    • (1990) Artificial Intelligence , vol.44 , pp. 257-303
    • Wellman, M.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.