-
1
-
-
14344265835
-
-
C.F. Aliferis, I. Tsamardinos, A. Statnikov, HITON, A novel Markov blanket algorithm for optimal variable selection, in: Proceedings of the 2003 American Medical Informatics Association Annual Symposium, 2003, pp. 21-25.
-
-
-
-
2
-
-
34249941942
-
-
J. Cheng, C. Hatzis, H. Hayashi, M.A. Krogel, S. Morishita, D. Page, J. Sese, KDD Cup 2001 Report. ACM SIGKDD Explorations, vol. 3, 2002, pp. 1-18. Available from: .
-
-
-
-
3
-
-
34249939865
-
-
D.M. Chickering, C. Meek, Finding optimal Bayesian networks, in: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, 2002, pp. 94-102.
-
-
-
-
4
-
-
34249950326
-
-
N. Friedman, I. Nachman, D. Peér, Learning Bayesian network structure from massive datasets: the "Sparse Candidate" algorithm, in: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999, pp. 206-215.
-
-
-
-
5
-
-
29144480967
-
Kernel methods for measuring independence
-
Gretton A., Herbrich R., Smola A., Bousquet O., and Schölkopf B. Kernel methods for measuring independence. Journal of Machine Learning Research 6 (2005) 2075-2129
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 2075-2129
-
-
Gretton, A.1
Herbrich, R.2
Smola, A.3
Bousquet, O.4
Schölkopf, B.5
-
6
-
-
29144505110
-
-
A. Gretton, A. Smola, O. Bousquet, R. Herbrich, A. Belitski, M. Augath, Y. Murayama, J. Pauls, B. Schölkopf, N. Logothetis, Kernel constrained covariance for dependence measurement, in: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005, pp. 1-8.
-
-
-
-
7
-
-
34249951217
-
-
E.H. Herskovits, Computer-based probabilistic-network construction, Ph.D. Thesis, Stanford University, 1991.
-
-
-
-
8
-
-
34249946352
-
-
C.S. Jensen, Blocking Gibbs sampling for inference in large and complex Bayesian networks with applications in genetics, Ph.D. Thesis, Aalborg University, 1997.
-
-
-
-
9
-
-
0030422272
-
-
R. Kohavi, D. Sommerfield, J. Dougherty, Data mining using MLC++: a machine learning library in C++, in: Tools with Artificial Intelligence, 1996, pp. 234-245.
-
-
-
-
10
-
-
84898996215
-
-
D. Margaritis, S. Thrun, Bayesian network induction via local neighborhoods, in: Proceedings of Neural Information Processing Systems, 2000, pp. 505-511.
-
-
-
-
11
-
-
34249933449
-
-
A. Ng, Preventing "Overfitting" of cross-validation data, in: Proceedings of the Fourteenth International Conference on Machine Learning, 1997, pp. 245-253.
-
-
-
-
13
-
-
26944438313
-
-
J.M. Peña, J. Björkegren, J. Tegnér, Scalable, efficient and correct learning of Markov boundaries under the faithfulness assumption, in: Proceedings of the Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, Lecture Notes in Artificial Intelligence, vol. 3571, 2005, pp. 136-147.
-
-
-
-
14
-
-
27544503451
-
Growing Bayesian network models of gene networks from seed genes
-
Peña J.M., Björkegren J., and Tegnér J. Growing Bayesian network models of gene networks from seed genes. Bioinformatics 21 (2005) ii224-ii229
-
(2005)
Bioinformatics
, vol.21
-
-
Peña, J.M.1
Björkegren, J.2
Tegnér, J.3
-
15
-
-
15944364151
-
An empirical Bayes approach to inferring large-scale gene association networks
-
Schäfer J., and Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21 (2005) 754-764
-
(2005)
Bioinformatics
, vol.21
, pp. 754-764
-
-
Schäfer, J.1
Strimmer, K.2
-
17
-
-
0003614273
-
-
Springer-Verlag
-
Spirtes P., Glymour C., and Scheines R. Causation, Prediction, and Search (1993), Springer-Verlag
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
19
-
-
34249938334
-
-
I. Tsamardinos, C.F. Aliferis, A. Statnikov, Algorithms for large scale Markov blanket discovery, in: Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference, 2003, pp. 376-380.
-
-
-
-
20
-
-
26944470217
-
-
I. Tsamardinos, C.F. Aliferis, A. Statnikov, Time and sample efficient discovery of Markov blankets and direct causal relations, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 673-678.
-
-
-
-
21
-
-
34249950668
-
-
I. Tsamardinos, C.F. Aliferis, A. Statnikov, Time and sample efficient discovery of Markov blankets and direct causal relations, Technical report DSL TR-03-04, Vanderbilt University, 2003.
-
-
-
-
22
-
-
33746035971
-
-
I. Tsamardinos, L.E. Brown, C.F. Aliferis, The max-min hill-climbing Bayesian network structure learning algorithm, Machine Learning (2006).
-
-
-
-
23
-
-
0242417619
-
Feature selection and transduction for prediction of molecular bioactivity for drug design
-
Weston J., Pérez-Cruz F., Bousquet O., Chapelle O., Elisseeff A., and Schölkopf B. Feature selection and transduction for prediction of molecular bioactivity for drug design. Bioinformatics 19 (2003) 764-771
-
(2003)
Bioinformatics
, vol.19
, pp. 764-771
-
-
Weston, J.1
Pérez-Cruz, F.2
Bousquet, O.3
Chapelle, O.4
Elisseeff, A.5
Schölkopf, B.6
|