메뉴 건너뛰기




Volumn 45, Issue 2, 2007, Pages 211-232

Towards scalable and data efficient learning of Markov boundaries

Author keywords

Bayesian networks; Classification; Feature subset selection

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; CLASSIFICATION (OF INFORMATION); DATA TRANSFER; DATABASE SYSTEMS; FEATURE EXTRACTION; GENE EXPRESSION;

EID: 34249931694     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2006.06.008     Document Type: Article
Times cited : (197)

References (23)
  • 1
    • 14344265835 scopus 로고    scopus 로고
    • C.F. Aliferis, I. Tsamardinos, A. Statnikov, HITON, A novel Markov blanket algorithm for optimal variable selection, in: Proceedings of the 2003 American Medical Informatics Association Annual Symposium, 2003, pp. 21-25.
  • 2
    • 34249941942 scopus 로고    scopus 로고
    • J. Cheng, C. Hatzis, H. Hayashi, M.A. Krogel, S. Morishita, D. Page, J. Sese, KDD Cup 2001 Report. ACM SIGKDD Explorations, vol. 3, 2002, pp. 1-18. Available from: .
  • 3
    • 34249939865 scopus 로고    scopus 로고
    • D.M. Chickering, C. Meek, Finding optimal Bayesian networks, in: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, 2002, pp. 94-102.
  • 4
    • 34249950326 scopus 로고    scopus 로고
    • N. Friedman, I. Nachman, D. Peér, Learning Bayesian network structure from massive datasets: the "Sparse Candidate" algorithm, in: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, 1999, pp. 206-215.
  • 6
    • 29144505110 scopus 로고    scopus 로고
    • A. Gretton, A. Smola, O. Bousquet, R. Herbrich, A. Belitski, M. Augath, Y. Murayama, J. Pauls, B. Schölkopf, N. Logothetis, Kernel constrained covariance for dependence measurement, in: Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, 2005, pp. 1-8.
  • 7
    • 34249951217 scopus 로고    scopus 로고
    • E.H. Herskovits, Computer-based probabilistic-network construction, Ph.D. Thesis, Stanford University, 1991.
  • 8
    • 34249946352 scopus 로고    scopus 로고
    • C.S. Jensen, Blocking Gibbs sampling for inference in large and complex Bayesian networks with applications in genetics, Ph.D. Thesis, Aalborg University, 1997.
  • 9
    • 0030422272 scopus 로고    scopus 로고
    • R. Kohavi, D. Sommerfield, J. Dougherty, Data mining using MLC++: a machine learning library in C++, in: Tools with Artificial Intelligence, 1996, pp. 234-245.
  • 10
    • 84898996215 scopus 로고    scopus 로고
    • D. Margaritis, S. Thrun, Bayesian network induction via local neighborhoods, in: Proceedings of Neural Information Processing Systems, 2000, pp. 505-511.
  • 11
    • 34249933449 scopus 로고    scopus 로고
    • A. Ng, Preventing "Overfitting" of cross-validation data, in: Proceedings of the Fourteenth International Conference on Machine Learning, 1997, pp. 245-253.
  • 13
    • 26944438313 scopus 로고    scopus 로고
    • J.M. Peña, J. Björkegren, J. Tegnér, Scalable, efficient and correct learning of Markov boundaries under the faithfulness assumption, in: Proceedings of the Eighth European Conference on Symbolic and Quantitative Approaches to Reasoning under Uncertainty, Lecture Notes in Artificial Intelligence, vol. 3571, 2005, pp. 136-147.
  • 14
    • 27544503451 scopus 로고    scopus 로고
    • Growing Bayesian network models of gene networks from seed genes
    • Peña J.M., Björkegren J., and Tegnér J. Growing Bayesian network models of gene networks from seed genes. Bioinformatics 21 (2005) ii224-ii229
    • (2005) Bioinformatics , vol.21
    • Peña, J.M.1    Björkegren, J.2    Tegnér, J.3
  • 15
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association networks
    • Schäfer J., and Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21 (2005) 754-764
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 19
    • 34249938334 scopus 로고    scopus 로고
    • I. Tsamardinos, C.F. Aliferis, A. Statnikov, Algorithms for large scale Markov blanket discovery, in: Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference, 2003, pp. 376-380.
  • 20
    • 26944470217 scopus 로고    scopus 로고
    • I. Tsamardinos, C.F. Aliferis, A. Statnikov, Time and sample efficient discovery of Markov blankets and direct causal relations, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 673-678.
  • 21
    • 34249950668 scopus 로고    scopus 로고
    • I. Tsamardinos, C.F. Aliferis, A. Statnikov, Time and sample efficient discovery of Markov blankets and direct causal relations, Technical report DSL TR-03-04, Vanderbilt University, 2003.
  • 22
    • 33746035971 scopus 로고    scopus 로고
    • I. Tsamardinos, L.E. Brown, C.F. Aliferis, The max-min hill-climbing Bayesian network structure learning algorithm, Machine Learning (2006).


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.