-
2
-
-
0002460150
-
The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
-
New York: Springer-Verlag
-
Beinlich, I., Suermondt, H. J., Chavez, R. M., Cooper, G. F. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. Proc. 2nd Eur. Conf. Artif. Intell. Med. New York: Springer-Verlag, pp. 247-256.
-
(1989)
Proc. 2nd Eur. Conf. Artif. Intell. Med
, pp. 247-256
-
-
Beinlich, I.1
Suermondt, H.J.2
Chavez, R.M.3
Cooper, G.F.4
-
4
-
-
77957967782
-
Improving Bayesian network parameter learning using constraints
-
New York: IEEE Press
-
de Campos, C. P., Ji, Q. (2008). Improving Bayesian network parameter learning using constraints. Proc. 19th Int. Conf. Patt. Recogn. (ICPR '08), New York: IEEE Press, pp. 1-4.
-
(2008)
Proc. 19th Int. Conf. Patt. Recogn. (ICPR '08)
, pp. 1-4
-
-
De Campos, C.P.1
Ji, Q.2
-
6
-
-
0004675530
-
Learning Gaussian networks
-
Redmond, WA. Available as Technical Report MSR-TR-94-10
-
Geiger, D., Heckerman, D. (1994). Learning Gaussian networks. Technical report, Microsoft Research, Redmond, WA. Available as Technical Report MSR-TR-94-10.
-
(1994)
Technical Report, Microsoft Research
-
-
Geiger, D.1
Heckerman, D.2
-
7
-
-
68949161935
-
Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
-
Hausser, J., Strimmer, K. (2009). Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. J. Mach. Learn. Res. 10:1469-1484.
-
(2009)
J. Mach. Learn. Res.
, vol.10
, pp. 1469-1484
-
-
Hausser, J.1
Strimmer, K.2
-
8
-
-
34249761849
-
Learning Bayesian networks: The combination of knowledge and statistical data
-
Available as Technical Report MSR-TR-94-09
-
Heckerman, D., Geiger, D., Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Mach. Learn. 20(3):197-243. Available as Technical Report MSR-TR-94-09.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
9
-
-
0001486499
-
Estimation with quadratic loss
-
Neyman, J., Ed. Berkeley, CA: University of California Press
-
James, W., Stein, C. (1961). Estimation with quadratic loss. In: Neyman, J., Ed. Proc. 4th Berkeley Symp. Mathemat. Statist. Probab. Berkeley, CA: University of California Press, pp. 361-379.
-
(1961)
Proc. 4th Berkeley Symp. Mathemat. Statist. Probab.
, pp. 361-379
-
-
James, W.1
Stein, C.2
-
12
-
-
73149097219
-
Regularized estimation of large-scale gene association networks using graphical gaussian models
-
Krämer, N., Schäfer, J., Boulesteix, A. (2009). Regularized estimation of large-scale gene association networks using graphical gaussian models. BMC Bioinform. 10(1):384.
-
(2009)
BMC Bioinform
, vol.10
, Issue.1
, pp. 384
-
-
Krämer, N.1
Schäfer, J.2
Boulesteix, A.3
-
14
-
-
84929843809
-
Learning Bayesian networks by genetic algorithms: A case study in the prediction of survival in malignant skin melanoma
-
New York: Springer
-
Larrañaga, P., Sierra, B., Gallego, M. J., Michelena, M. J., Picaza, J. M. (1997). Learning Bayesian networks by genetic algorithms: A case study in the prediction of survival in malignant skin melanoma. Proc. 6th Conf. Artific. Intell. Med. Eur. (AIME '97).New York: Springer, pp. 261-272.
-
(1997)
Proc. 6th Conf. Artific. Intell. Med. Eur. (AIME '97)
, pp. 261-272
-
-
Larrañaga, P.1
Sierra, B.2
Gallego, M.J.3
Michelena, M.J.4
Picaza, J.M.5
-
15
-
-
0041841552
-
Improved estimation of the covariance matrix of stock returns with an application to portfolio selection
-
Ledoit, O., Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empir. Fina. 10:603-621.
-
(2003)
J. Empir. Fina.
, vol.10
, pp. 603-621
-
-
Ledoit, O.1
Wolf, M.2
-
17
-
-
84950435288
-
A network algorithm for performing fisher's exact test in r × c contingency tables
-
Mehta, C., Patel, N. (1983). A network algorithm for performing fisher's exact test in r × c contingency tables. J. Amer. Statist. Assoc. 78:427-434.
-
(1983)
J. Amer. Statist. Assoc.
, vol.78
, pp. 427-434
-
-
Mehta, C.1
Patel, N.2
-
18
-
-
1942452317
-
Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning
-
New York: AAAI Press
-
Moore, A., Wong, W. (2003). Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. Proc. 20th Int. Conf. Mach. Learn. (ICML '03), New York: AAAI Press, pp. 552-559.
-
(2003)
Proc. 20th Int. Conf. Mach. Learn. (ICML '03)
, pp. 552-559
-
-
Moore, A.1
Wong, W.2
-
21
-
-
79951480123
-
-
R Development Core Team. Vienna: R Foundation for Statistical Computing
-
R Development Core Team (2010). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
-
(2010)
R: A Language and Environment for Statistical Computing
-
-
-
22
-
-
27844521293
-
A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
-
Schäfer, J., Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statist. Applic. Genet. Molec. Biol. 4:32.
-
(2005)
Statist. Applic. Genet. Molec. Biol.
, vol.4
, pp. 32
-
-
Schäfer, J.1
Strimmer, K.2
-
23
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz, G. E. (1978). Estimating the dimension of a model. Ann. Statist. 6(2):461-464.
-
(1978)
Ann. Statist.
, vol.6
, Issue.2
, pp. 461-464
-
-
Schwarz, G.E.1
-
24
-
-
77955124773
-
Learning Bayesian networks with the bnlearn R package
-
Scutari, M. (2010). Learning Bayesian networks with the bnlearn R package. J. Statist. Software 35(3):1-22.
-
(2010)
J. Statist. Software
, vol.35
, Issue.3
, pp. 1-22
-
-
Scutari, M.1
-
25
-
-
0000813561
-
Inadmissibility of the usual estimator for the mean of a multivariate distribution
-
Neyman, J., ed., Berkeley, CA: University of California Press
-
Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate distribution. In: Neyman, J., ed. Proc. 3rd Berkeley Symp. Mathemat. Statist. Probab., Berkeley, CA: University of California Press, pp. 197-206.
-
(1956)
Proc. 3rd Berkeley Symp. Mathemat. Statist. Probab.
, pp. 197-206
-
-
Stein, C.1
-
26
-
-
33746035971
-
The max-min hill-climbing Bayesian network structure learning algorithm
-
Tsamardinos, I., Brown, L. E., Aliferis, C. F. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machi. Learn. 65(1):31-78.
-
(2006)
Machi. Learn.
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
|