메뉴 건너뛰기




Volumn 6323 LNAI, Issue PART 3, 2010, Pages 322-337

Permutation testing improves bayesian network learning

Author keywords

[No Author keywords available]

Indexed keywords

ASYMPTOTIC TESTS; BASIC PROCEDURE; BAYESIAN NETWORK LEARNING; CATEGORICAL DATA; CONDITIONAL INDEPENDENCES; CONSTRAINT-BASED; DATA SETS; DIFFERENT DISTRIBUTIONS; EXACT TESTS; GRAPHICAL MODEL; LEARNING BEHAVIOR; LEARNING NETWORK; LEARNING PROBLEM; META-ANALYSIS; MONTE CARLO; P-VALUES; PERMUTATION PROCEDURES; PERMUTATION TESTING; SEMIPARAMETRIC; SMALL SAMPLE SIZE; STRUCTURAL LEARNING; TYPE-I ERROR; VARIABLE SELECTION ALGORITHMS;

EID: 77958036957     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-15939-8_21     Document Type: Conference Paper
Times cited : (48)

References (19)
  • 2
    • 84972545970 scopus 로고
    • A survey of exact inference for contingency tables
    • Agresti, A.: A survey of exact inference for contingency tables. Statistical Sci-ence 7(1), 131-153 (1992)
    • (1992) Statistical Science , vol.7 , Issue.1 , pp. 131-153
    • Agresti, A.1
  • 3
    • 76749137632 scopus 로고    scopus 로고
    • Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation
    • Aliferis, C.F., et al.: Local causal and markov blanket induction for causal discovery and feature selection for classification part i: Algorithms and empirical evaluation. JMLR 11, 171-234 (2010)
    • (2010) JMLR , vol.11 , pp. 171-234
    • Aliferis, C.F.1
  • 4
    • 0002460150 scopus 로고
    • The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks
    • Beinlich, I., Suermondt, G., Chavez, R., Cooper, G.: The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. Artificial Intelligence in Medicine, 247-256 (1989)
    • (1989) Artificial Intelligence in Medicine , pp. 247-256
    • Beinlich, I.1    Suermondt, G.2    Chavez, R.3    Cooper, G.4
  • 5
    • 1842641832 scopus 로고    scopus 로고
    • Using a permutation test for attribute selection in decision trees
    • Morgan Kaufmann, San Francisco
    • Frank, E., Witten, I.H.: Using a permutation test for attribute selection in decision trees. In: ICML, pp. 152-160. Morgan Kaufmann, San Francisco (1998)
    • (1998) ICML , pp. 152-160
    • Frank, E.1    Witten, I.H.2
  • 7
    • 38849106351 scopus 로고    scopus 로고
    • A comparison of meta-analysis methods for detecting dif-ferentially expressed genes in microarray experiments
    • Hong, F., Breitling, R.: A comparison of meta-analysis methods for detecting dif-ferentially expressed genes in microarray experiments. Bioinformatics 24, 374-382 (2008)
    • (2008) Bioinformatics , vol.24 , pp. 374-382
    • Hong, F.1    Breitling, R.2
  • 9
    • 77954565620 scopus 로고    scopus 로고
    • Tech. Rep. 03-05, Department ofComputer Science, University ofMassachusetts Amherst
    • Jensen, D., Neville, J.: Randomization tests for relational learning. Tech. Rep. 03-05, Department ofComputer Science, University ofMassachusetts Amherst (2003)
    • (2003) Randomization Tests for Relational Learning
    • Jensen, D.1    Neville, J.2
  • 10
    • 10544221719 scopus 로고
    • Statxact: A statistical package for exact nonparametric inference
    • Mehta, C.P.: Statxact: A statistical package for exact nonparametric inference. The American Statistician 45, 74-75 (1991)
    • (1991) The American Statistician , vol.45 , pp. 74-75
    • Mehta, C.P.1
  • 12
    • 0036392228 scopus 로고    scopus 로고
    • Ancestral graph markov models
    • Richardson, T., Spirtes, P.: Ancestral graph markov models. Annals of Statis-tics 30(4), 962-1030 (2002)
    • (2002) Annals of Statistics , vol.30 , Issue.4 , pp. 962-1030
    • Richardson, T.1    Spirtes, P.2
  • 15
    • 85069202966 scopus 로고    scopus 로고
    • Integrating locally learned causal structures with overlapping variables
    • Tillman, R.E., Danks, D., Glymour, C.: Integrating locally learned causal struc-tures with overlapping variables. In: NIPS (2008)
    • (2008) NIPS
    • Tillman, R.E.1    Danks, D.2    Glymour, C.3
  • 17
    • 33746035971 scopus 로고    scopus 로고
    • The Max-Min hill-climbing bayesian network structure learning algorithm
    • Tsamardinos, I., Brown, L., Aliferis, C.: The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Machine Learning 65(1), 31-78 (2006)
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3
  • 18
    • 77958053597 scopus 로고    scopus 로고
    • The possibility of integrative causal analysis: Learning from different datasets and studies
    • to appear
    • Tsamardinos, I., Triantafyllou, S.: The possibility of integrative causal analysis: Learning from different datasets and studies. Journal of Engineering Intelligent Systems (to appear, 2010)
    • (2010) Journal of Engineering Intelligent Systems
    • Tsamardinos, I.1    Triantafyllou, S.2
  • 19
    • 57749169260 scopus 로고    scopus 로고
    • Bounding the false discovery rate in local bayesian network learning
    • Tsamardinos, I., Brown, L.E.: Bounding the false discovery rate in local bayesian network learning. In: AAAI, pp. 1100-1105 (2008)
    • (2008) AAAI , pp. 1100-1105
    • Tsamardinos, I.1    Brown, L.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.