메뉴 건너뛰기




Volumn 123, Issue , 2014, Pages 3-12

Efficient methods for learning Bayesian network super-structures

Author keywords

Bayesian networks; Structure learning; Super structure

Indexed keywords

BENCHMARK NETWORKS; COMPUTATIONAL COSTS; CONDITIONAL INDEPENDENCES; LEARNING BAYESIAN NETWORKS; SENSITIVITY AND SPECIFICITY; STATE-OF-THE-ART METHODS; STRUCTURE-LEARNING; SUPER-STRUCTURES;

EID: 84885836157     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.10.035     Document Type: Article
Times cited : (33)

References (26)
  • 1
    • 0034215972 scopus 로고    scopus 로고
    • Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics
    • Nikovski D. Constructing Bayesian networks for medical diagnosis from incomplete and partially correct statistics. IEEE Trans. Knowl. Data Eng. 2000, 12(4):509-516.
    • (2000) IEEE Trans. Knowl. Data Eng. , vol.12 , Issue.4 , pp. 509-516
    • Nikovski, D.1
  • 2
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • Friedman N., Linial M., Nachman I., Pe'er D. Using Bayesian networks to analyze expression data. J. Comput. Biol. 2000, 7(3-4):601-620.
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'er, D.4
  • 5
    • 33646107783 scopus 로고    scopus 로고
    • Large-sample learning of Bayesian networks is NP-hard
    • Chickering D., Heckerman D., Meek C. Large-sample learning of Bayesian networks is NP-hard. J. Mach. Learn. Res. 2004, 5:1287-1330.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 1287-1330
    • Chickering, D.1    Heckerman, D.2    Meek, C.3
  • 7
    • 34249761849 scopus 로고
    • Learning Bayesian networks the combination of knowledge an statistical data
    • Heckerman D., Geiger D., Chickering D. Learning Bayesian networks the combination of knowledge an statistical data. Mach. Learn. 1995, 20(3):197-243.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.3
  • 8
    • 34948816667 scopus 로고    scopus 로고
    • A hybrid Bayesian network learning method for constructing gene networks
    • Wang M., Chen Z., Cloutier S. A hybrid Bayesian network learning method for constructing gene networks. Comput. Biol. Chem. 2007, 31(5-6):361-372.
    • (2007) Comput. Biol. Chem. , vol.31 , Issue.5-6 , pp. 361-372
    • Wang, M.1    Chen, Z.2    Cloutier, S.3
  • 9
    • 4444383943 scopus 로고    scopus 로고
    • An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach
    • Wong M., Leung K. An efficient data mining method for learning Bayesian networks using an evolutionary algorithm-based hybrid approach. IEEE Trans. Evol. Comput. 2004, 8(4):378-404.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.4 , pp. 378-404
    • Wong, M.1    Leung, K.2
  • 10
    • 33746035971 scopus 로고    scopus 로고
    • The max-min hill-climbing Bayesian network structure learning algorithm
    • Tsamardinos I., Brown L., Aliferis C. The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 2006, 65(1):31-78.
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.2    Aliferis, C.3
  • 11
    • 56349103181 scopus 로고    scopus 로고
    • Finding optimal Bayesian network given a super-structure
    • Perrier E., Imoto S., Miyano S. Finding optimal Bayesian network given a super-structure. J. Mach. Learn. Res. 2008, 9:2251-2286.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2251-2286
    • Perrier, E.1    Imoto, S.2    Miyano, S.3
  • 12
    • 76749103392 scopus 로고    scopus 로고
    • Optimal search on clustered structural constraint for learning Bayesian network structure
    • Kojima K., Perrier E., Imoto S., Miyano S. Optimal search on clustered structural constraint for learning Bayesian network structure. J. Mach. Learn. Res. 2010, 11:285-310.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 285-310
    • Kojima, K.1    Perrier, E.2    Imoto, S.3    Miyano, S.4
  • 13
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data. an information-theory based approach
    • Cheng J., Greiner R., Kelly J., Bell D., Liu W. Learning Bayesian networks from data. an information-theory based approach. Artif. Intell. 2002, 137:43-90.
    • (2002) Artif. Intell. , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 14
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • Kalisch M., Bühlmann P. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 2007, 8:613-636.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 15
    • 34249931694 scopus 로고    scopus 로고
    • Towards scalable and data efficient learning of Markov boundaries
    • Pena J., Nilsson R., Bjorkegren J., Tegner J. Towards scalable and data efficient learning of Markov boundaries. Int. J. Approx. Reason. 2007, 45(2):211-232.
    • (2007) Int. J. Approx. Reason. , vol.45 , Issue.2 , pp. 211-232
    • Pena, J.1    Nilsson, R.2    Bjorkegren, J.3    Tegner, J.4
  • 16
    • 84862219196 scopus 로고    scopus 로고
    • Optimized algorithm for learning Bayesian network super-structures, in: Proceedings of the ICPRAM'12
    • E. Villanueva, C. Maciel, Optimized algorithm for learning Bayesian network super-structures, in: Proceedings of the ICPRAM'12, 2012, pp. 217-222.
    • (2012) , pp. 217-222
    • Villanueva, E.1    Maciel, C.2
  • 17
    • 77958041308 scopus 로고    scopus 로고
    • An efficient and scalable algorithm for local Bayesian network structure discovery, in: Proceedings of the 2010 ECML/PKDD
    • P.S. De Morais, A. Aussem, An efficient and scalable algorithm for local Bayesian network structure discovery, in: Proceedings of the 2010 ECML/PKDD, 2010, pp. 164-179.
    • (2010) , pp. 164-179
    • De Morais, P.S.1    Aussem, A.2
  • 18
    • 84885847822 scopus 로고    scopus 로고
    • Bayesian belief network for data mining, in: Proceedings of the second DMDW
    • H. Steck, V. Tresp, Bayesian belief network for data mining, in: Proceedings of the second DMDW, 1999, pp. 145-154.
    • (1999) , pp. 145-154
    • Steck, H.1    Tresp, V.2
  • 19
    • 84885849995 scopus 로고
    • Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann
    • J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann, 1988.
    • (1988)
    • Pearl, J.1
  • 21
    • 9444248216 scopus 로고    scopus 로고
    • A skeleton-based approach to learning Bayesian networks from data, in: Proceedings of the PKDD 2003, Lecture Notes in Computer Science
    • S. Van Dijk, L. Van Der Gaag, D. Thierens, A skeleton-based approach to learning Bayesian networks from data, in: Proceedings of the PKDD 2003, Lecture Notes in Computer Science, vol. 2838, 2003, pp. 132-143.
    • (2003) , vol.2838 , pp. 132-143
    • Van Dijk, S.1    Van Der Gaag, L.2    Thierens, D.3
  • 22
    • 85156264409 scopus 로고    scopus 로고
    • On the Dirichlet prior and Bayesian regularization, in: Advances in Neural Information Processing Systems
    • H. Steck, T. Jaakkola, On the Dirichlet prior and Bayesian regularization, in: Advances in Neural Information Processing Systems, vol. 15, 2002, pp. 697-704.
    • (2002) , vol.15 , pp. 697-704
    • Steck, H.1    Jaakkola, T.2
  • 23
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271-2282.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 24
    • 21244449935 scopus 로고    scopus 로고
    • Identifying Markov blankets with decision tree induction, in: Proceedings of the third IEEE ICDM
    • L. Frey, D. Fisher, I. Tsamardinos, C. Aliferis, A. Statnikov, Identifying Markov blankets with decision tree induction, in: Proceedings of the third IEEE ICDM, 2003, pp. 59-66.
    • (2003) , pp. 59-66
    • Frey, L.1    Fisher, D.2    Tsamardinos, I.3    Aliferisc, C.4    Statnikov, A.5
  • 25
    • 68949163877 scopus 로고    scopus 로고
    • Bayesian network structure learning by recursive autonomy identification
    • Yehezkel R., Lerner B. Bayesian network structure learning by recursive autonomy identification. J. Mach. Learn. Res. 2009, 10:1527-1570.
    • (2009) J. Mach. Learn. Res. , vol.10 , pp. 1527-1570
    • Yehezkel, R.1    Lerner, B.2
  • 26
    • 33746080013 scopus 로고    scopus 로고
    • Generating realistic large Bayesian networks by tiling, in: Proceedings of the 19th International FLAIRS Conference
    • I. Tsamardinos, A. Statnikov, L. Brown, C. Aliferis, Generating realistic large Bayesian networks by tiling, in: Proceedings of the 19th International FLAIRS Conference, 2006, pp. 592-597.
    • (2006) , pp. 592-597
    • Tsamardinos, I.1    Statnikov, A.2    Brown, L.3    Aliferis, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.