메뉴 건너뛰기




Volumn 5, Issue , 2004, Pages 549-573

Exact Bayesian structure discovery in Bayesian networks

Author keywords

Complex interactions; Dynamic programming; Layering; Structure learning

Indexed keywords

ALGORITHMS; COMPLEX NETWORKS; DYNAMIC PROGRAMMING; MONTE CARLO METHODS;

EID: 31844439894     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (376)

References (28)
  • 1
    • 21244484641 scopus 로고    scopus 로고
    • Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs
    • S. Acid and L. De Campos. Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 18:445-490, 2003.
    • (2003) Journal of Artificial Intelligence Research , vol.18 , pp. 445-490
    • Acid, S.1    De Campos, L.2
  • 4
    • 84881579627 scopus 로고
    • Dynamic programming treatment of the travelling salesman problem
    • R. Bellman. Dynamic programming treatment of the travelling salesman problem. Journal of the ACM, 9:61-63, 1962.
    • (1962) Journal of the ACM , vol.9 , pp. 61-63
    • Bellman, R.1
  • 6
    • 0001916227 scopus 로고
    • Properties of Bayesian belief network learning algorithms
    • R. Lopez de Mantaras and D. Poole, editors, Seattle, WA, Morgan Kaufmann, San Francisco, CA
    • R. R. Bouckaert. Properties of Bayesian belief network learning algorithms. In R. Lopez de Mantaras and D. Poole, editors, Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence, pages 102-109, Seattle, WA, 1994. Morgan Kaufmann, San Francisco, CA.
    • (1994) Proceedings of the Tenth Conference on Uncertainty in Artificial Intelligence , pp. 102-109
    • Bouckaert, R.R.1
  • 7
    • 0001926525 scopus 로고
    • Theory refinement on Bayesian networks
    • B. D'Ambrosio, P. Smets, and P. Bonissone, editors, Los Angeles, CA, Morgan Kaufmann, San Mateo, CA
    • W. Buntine. Theory refinement on Bayesian networks. In B. D'Ambrosio, P. Smets, and P. Bonissone, editors, Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, pages 52-60, Los Angeles, CA, 1991. Morgan Kaufmann, San Mateo, CA.
    • (1991) Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence , pp. 52-60
    • Buntine, W.1
  • 9
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure indentification with greedy search
    • D. M. Chickering. Optimal structure indentification with greedy search. Journal of Machine Learning Research, 3:507-554, 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 11
    • 0002248815 scopus 로고    scopus 로고
    • A Bayesian approach to learning Bayesian networks with local structure
    • D. Geiger and P. Shenoy, editors, Providence, RI, Morgan Kaufmann, San Francisco, CA
    • D. M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian networks with local structure. In D. Geiger and P. Shenoy, editors, Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pages 80-89, Providence, RI, 1997. Morgan Kaufmann, San Francisco, CA.
    • (1997) Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence , pp. 80-89
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 12
    • 84933530882 scopus 로고
    • Approximating discrete probability distributions with dependence trees
    • C. Chow and C. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14:462-467, 1968.
    • (1968) IEEE Transactions on Information Theory , vol.14 , pp. 462-467
    • Chow, C.1    Liu, C.2
  • 13
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 14
    • 0033188982 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for reasoning
    • R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113(1-2):41-85, 1999.
    • (1999) Artificial Intelligence , vol.113 , Issue.1-2 , pp. 41-85
    • Dechter, R.1
  • 15
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks
    • N. Friedman and D. Koller. Being Bayesian about network structure: A Bayesian approach to structure discovery in Bayesian networks. Machine Learning, 50(1-2):95-125, 2003.
    • (2003) Machine Learning , vol.50 , Issue.1-2 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 17
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20:197-243, 1995a.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 19
    • 0012315692 scopus 로고    scopus 로고
    • A Bayesian approach to causal discovery
    • C. Glymour and G. F. Cooper, editors, MIT Press, Cambridge
    • D. Heckerman, C. Meek, and G. F. Cooper. A Bayesian approach to causal discovery. In C. Glymour and G. F. Cooper, editors, Computation, Causation, Discovery, pages 141-165. MIT Press, Cambridge, 1999.
    • (1999) Computation, Causation, Discovery , pp. 141-165
    • Heckerman, D.1    Meek, C.2    Cooper, G.F.3
  • 22
    • 0000252076 scopus 로고
    • Computational aspects of the Möbius transformation
    • P. B. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, North-Holland, Amsterdam
    • R. Kennes and P. Smets. Computational aspects of the Möbius transformation. In P. B. Bonissone, M. Henrion, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 6, pages 401-416. North-Holland, Amsterdam, 1991.
    • (1991) Uncertainty in Artificial Intelligence 6 , pp. 401-416
    • Kennes, R.1    Smets, P.2
  • 25
  • 28
    • 0030128035 scopus 로고    scopus 로고
    • An algebraic model for combinatorial problems
    • R. E. Stearns and H. B. Hunt III. An algebraic model for combinatorial problems. SIAM Journal on Computing, 25(2):448-476, 1996.
    • (1996) SIAM Journal on Computing , vol.25 , Issue.2 , pp. 448-476
    • Stearns, R.E.1    Hunt, H.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.