메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1087-1096

Correlated multi-label feature selection

Author keywords

cutting plane; dual coordinate descent; feature selection; label correlation; multi label learning

Indexed keywords

BENCHMARK DATA; COORDINATE DESCENT; CUTTING PLANE ALGORITHMS; CUTTING PLANES; FEATURE SELECTION METHODS; FEATURE SELECTION PROBLEM; HIGH DIMENSIONALITY; LEARNING METHODS; MINIMAX OPTIMIZATION; MIXED INTEGER PROGRAMMING; MULTI-LABEL; PRIOR DISTRIBUTION; WEIGHT VECTOR;

EID: 83055191234     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2063576.2063734     Document Type: Conference Paper
Times cited : (92)

References (39)
  • 1
    • 3042597440 scopus 로고    scopus 로고
    • Learning multi-label scene classification
    • DOI 10.1016/j.patcog.2004.03.009, PII S0031320304001074
    • M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004. (Pubitemid 38804465)
    • (2004) Pattern Recognition , vol.37 , Issue.9 , pp. 1757-1771
    • Boutell, M.R.1    Luo, J.2    Shen, X.3    Brown, C.M.4
  • 3
    • 52649118114 scopus 로고    scopus 로고
    • Semi-supervised multi-label learning by solving a sylvester equation
    • G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning by solving a sylvester equation. In SDM, pages 410-419, 2008.
    • (2008) SDM , pp. 410-419
    • Chen, G.1    Song, Y.2    Wang, F.3    Zhang, C.4
  • 4
    • 70450163017 scopus 로고    scopus 로고
    • Efficient multi-label classification with hypergraph regularization
    • G. Chen, J. Zhang, F. Wang, C. Zhang, and Y. Gao. Efficient multi-label classification with hypergraph regularization. In CVPR, pages 1658-1665, 2009.
    • (2009) CVPR , pp. 1658-1665
    • Chen, G.1    Zhang, J.2    Wang, F.3    Zhang, C.4    Gao, Y.5
  • 5
    • 56449083666 scopus 로고    scopus 로고
    • Training svm with indefinite kernels
    • J. Chen and J. Ye. Training svm with indefinite kernels. In ICML, pages 136-143, 2008.
    • (2008) ICML , pp. 136-143
    • Chen, J.1    Ye, J.2
  • 6
    • 31844452516 scopus 로고    scopus 로고
    • Log-linear models for label ranking
    • O. Dekel, C. D. Manning, and Y. Singer. Log-linear models for label ranking. In NIPS, 2003.
    • (2003) NIPS
    • Dekel, O.1    Manning, C.D.2    Singer, Y.3
  • 7
    • 2542631648 scopus 로고    scopus 로고
    • A kernel method for multi-labelled classification
    • A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In NIPS, pages 681-687, 2001.
    • (2001) NIPS , pp. 681-687
    • Elisseeff, A.1    Weston, J.2
  • 9
    • 74549164862 scopus 로고    scopus 로고
    • Subspace maximum margin clustering
    • Q. Gu and J. Zhou. Subspace maximum margin clustering. In CIKM, pages 1337-1346, 2009.
    • (2009) CIKM , pp. 1337-1346
    • Gu, Q.1    Zhou, J.2
  • 11
    • 77956531458 scopus 로고    scopus 로고
    • Large scale max-margin multi-label classification with priors
    • B. Hariharan, L. Zelnik-Manor, S. V. N. Vishwanathan, and M. Varma. Large scale max-margin multi-label classification with priors. In ICML, pages 423-430, 2010.
    • (2010) ICML , pp. 423-430
    • Hariharan, B.1    Zelnik-Manor, L.2    Vishwanathan, S.V.N.3    Varma, M.4
  • 13
    • 65449189832 scopus 로고    scopus 로고
    • Extracting shared subspace for multi-label classification
    • S. Ji, L. Tang, S. Yu, and J. Ye. Extracting shared subspace for multi-label classification. In KDD, pages 381-389, 2008.
    • (2008) KDD , pp. 381-389
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 14
    • 0242456822 scopus 로고    scopus 로고
    • Optimizing search engines using clickthrough data
    • T. Joachims. Optimizing search engines using clickthrough data. In KDD, pages 133-142, 2002.
    • (2002) KDD , pp. 133-142
    • Joachims, T.1
  • 15
    • 33749563073 scopus 로고    scopus 로고
    • Training linear svms in linear time
    • T. Joachims. Training linear svms in linear time. In KDD, pages 217-226, 2006.
    • (2006) KDD , pp. 217-226
    • Joachims, T.1
  • 16
    • 69549111057 scopus 로고    scopus 로고
    • Cutting-plane training of structural svms
    • T. Joachims, T. Finley, and C.-N. J. Yu. Cutting-plane training of structural svms. Machine Learning, 77(1):27-59, 2009.
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 27-59
    • Joachims, T.1    Finley, T.2    Yu, C.-N.J.3
  • 17
    • 0001547779 scopus 로고
    • The cutting plane method for solving convex programs
    • J. E. Kelley. The cutting plane method for solving convex programs. Journal of the SIAM, 8:703-712, 1960.
    • (1960) Journal of the SIAM , vol.8 , pp. 703-712
    • Kelley, J.E.1
  • 18
    • 69649090538 scopus 로고    scopus 로고
    • A minimax theorem with applications to machine learning, signal processing, and finance
    • November
    • S.-J. Kim and S. Boyd. A minimax theorem with applications to machine learning, signal processing, and finance. SIAM J. on Optimization, 19:1344-1367, November 2008.
    • (2008) SIAM J. on Optimization , vol.19 , pp. 1344-1367
    • Kim, S.-J.1    Boyd, S.2
  • 20
    • 77956537253 scopus 로고    scopus 로고
    • Tighter and convex maximum margin clusteringe
    • Y. Li, I. Tsang, J. Kwok, and Z. Zhou. Tighter and convex maximum margin clusteringe. In AISTATS, 2009.
    • (2009) AISTATS
    • Li, Y.1    Tsang, I.2    Kwok, J.3    Zhou, Z.4
  • 22
    • 34547971778 scopus 로고    scopus 로고
    • More efficiency in multiple kernel learning
    • A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in multiple kernel learning. In ICML, pages 775-782, 2007.
    • (2007) ICML , pp. 775-782
    • Rakotomamonjy, A.1    Bach, F.2    Canu, S.3    Grandvalet, Y.4
  • 24
    • 0037818380 scopus 로고    scopus 로고
    • High-performing feature selection for text classification
    • M. Rogati and Y. Yang. High-performing feature selection for text classification. In CIKM, pages 659-661, 2002.
    • (2002) CIKM , pp. 659-661
    • Rogati, M.1    Yang, Y.2
  • 25
    • 34547964973 scopus 로고    scopus 로고
    • Pegasos: Primal estimated sub-gradient solver for svm
    • S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for svm. In ICML, pages 807-814, 2007.
    • (2007) ICML , pp. 807-814
    • Shalev-Shwartz, S.1    Singer, Y.2    Srebro, N.3
  • 27
    • 65449185036 scopus 로고    scopus 로고
    • Hypergraph spectral learning for multi-label classification
    • L. Sun, S. Ji, and J. Ye. Hypergraph spectral learning for multi-label classification. In KDD, pages 668-676, 2008.
    • (2008) KDD , pp. 668-676
    • Sun, L.1    Ji, S.2    Ye, J.3
  • 28
    • 77956551904 scopus 로고    scopus 로고
    • Learning sparse svm for feature selection on very high dimensional datasets
    • M. Tan, L. Wang, and I. W. Tsang. Learning sparse svm for feature selection on very high dimensional datasets. In ICML, pages 1047-1054, 2010.
    • (2010) ICML , pp. 1047-1054
    • Tan, M.1    Wang, L.2    Tsang, I.W.3
  • 29
    • 78751693089 scopus 로고    scopus 로고
    • On multiple kernel learning with multiple labels
    • L. Tang, J. Chen, and J. Ye. On multiple kernel learning with multiple labels. In IJCAI, pages 1255-1260, 2009.
    • (2009) IJCAI , pp. 1255-1260
    • Tang, L.1    Chen, J.2    Ye, J.3
  • 30
    • 84958141402 scopus 로고    scopus 로고
    • Parametric mixture models for multi-labeled text
    • N. Ueda and K. Saito. Parametric mixture models for multi-labeled text. In NIPS, pages 721-728, 2002.
    • (2002) NIPS , pp. 721-728
    • Ueda, N.1    Saito, K.2
  • 31
    • 78149293310 scopus 로고    scopus 로고
    • Multi-label linear discriminant analysis
    • H. Wang, C. H. Q. Ding, and H. Huang. Multi-label linear discriminant analysis. In ECCV (6), pages 126-139, 2010.
    • (2010) ECCV , Issue.6 , pp. 126-139
    • Wang, H.1    Ding, C.H.Q.2    Huang, H.3
  • 32
    • 84863385308 scopus 로고    scopus 로고
    • An extended level method for efficient multiple kernel learning
    • Z. Xu, R. Jin, I. King, and M. R. Lyu. An extended level method for efficient multiple kernel learning. In NIPS, pages 1825-1832, 2008.
    • (2008) NIPS , pp. 1825-1832
    • Xu, Z.1    Jin, R.2    King, I.3    Lyu, M.R.4
  • 33
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Y. Yang. An evaluation of statistical approaches to text categorization. Inf. Retr., 1(1-2):69-90, 1999.
    • (1999) Inf. Retr. , vol.1 , Issue.1-2 , pp. 69-90
    • Yang, Y.1
  • 34
    • 0003141935 scopus 로고    scopus 로고
    • A comparative study on feature selection in text categorization
    • Y. Yang and J. O. Pedersen. A comparative study on feature selection in text categorization. In ICML, pages 412-420, 1997.
    • (1997) ICML , pp. 412-420
    • Yang, Y.1    Pedersen, J.O.2
  • 35
    • 84885640929 scopus 로고    scopus 로고
    • Multi-label informed latent semantic indexing
    • K. Yu, S. Yu, and V. Tresp. Multi-label informed latent semantic indexing. In SIGIR, pages 258-265, 2005.
    • (2005) SIGIR , pp. 258-265
    • Yu, K.1    Yu, S.2    Tresp, V.3
  • 36
    • 77956201769 scopus 로고    scopus 로고
    • Multi-label learning by exploiting label dependency
    • M.-L. Zhang and K. Zhang. Multi-label learning by exploiting label dependency. In KDD, pages 999-1008, 2010.
    • (2010) KDD , pp. 999-1008
    • Zhang, M.-L.1    Zhang, K.2
  • 38
    • 77956213932 scopus 로고    scopus 로고
    • Transfer metric learning by learning task relationships
    • Y. Zhang and D.-Y. Yeung. Transfer metric learning by learning task relationships. In KDD, pages 1199-1208, 2010.
    • (2010) KDD , pp. 1199-1208
    • Zhang, Y.1    Yeung, D.-Y.2
  • 39
    • 57749121315 scopus 로고    scopus 로고
    • Multi-label dimensionality reduction via dependence maximization
    • Y. Zhang and Z.-H. Zhou. Multi-label dimensionality reduction via dependence maximization. In AAAI, pages 1503-1505, 2008.
    • (2008) AAAI , pp. 1503-1505
    • Zhang, Y.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.