메뉴 건너뛰기




Volumn 2, Issue , 2003, Pages 552-559

Optimal Reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; GRAPH THEORY; LEARNING ALGORITHMS; OPTIMIZATION; PROBABILITY;

EID: 1942452317     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (88)

References (20)
  • 1
    • 0002460150 scopus 로고
    • The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks
    • Berlin: Springer-Verlag
    • Beinlich, I. A., Suermondt, H. J., Chavez, R. M., & Cooper, G. F. (1989). The alarm monitoring system: A case study with two probabilistic inference techniques for belief networks. Proc. Second European Conference on AI and Medicine (pp. 247-256). Berlin: Springer-Verlag.
    • (1989) Proc. Second European Conference on AI and Medicine , pp. 247-256
    • Beinlich, I.A.1    Suermondt, H.J.2    Chavez, R.M.3    Cooper, G.F.4
  • 4
    • 0001019707 scopus 로고    scopus 로고
    • Learning Bayesian networks is NP-Complete
    • D. Fisher and H. Lenz (Eds.), Springer-Verlag
    • Chickering, D. M. (1996a). Learning Bayesian networks is NP-Complete. In D. Fisher and H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics v, 121-130. Springer-Verlag.
    • (1996) Learning from Data: Artificial Intelligence and Statistics v , pp. 121-130
    • Chickering, D.M.1
  • 5
    • 0002332440 scopus 로고    scopus 로고
    • Learning equivalence classes of Bayesian network structures
    • Portland, OR. Morgan Kaufmann
    • Chickering, D. M. (1996b). Learning equivalence classes of Bayesian network structures. Proceedings of the Twelfth Conference on UAI, Portland, OR (pp. 150-157). Morgan Kaufmann.
    • (1996) Proceedings of the Twelfth Conference on UAI , pp. 150-157
    • Chickering, D.M.1
  • 6
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9, 309-347.
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.1    Herskovits, E.2
  • 8
    • 0001586968 scopus 로고    scopus 로고
    • Learning belief networks in the presence of missing values and hidden variables
    • Morgan Kaufmann
    • Friedman, N. (1997). Learning belief networks in the presence of missing values and hidden variables. Proc. 14th ICML(pp. 125-133). Morgan Kaufmann.
    • (1997) Proc. 14th ICML , pp. 125-133
    • Friedman, N.1
  • 10
    • 0002219642 scopus 로고    scopus 로고
    • Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm
    • Friedman, N., Nachman, I., & Peér, D. (1999). Learning Bayesian network structure from massive datasets: The "sparse candidate" algorithm. Proceedings of the Fifteenth Conference on UAI (pp. 206-215).
    • (1999) Proceedings of the Fifteenth Conference on UAI , pp. 206-215
    • Friedman, N.1    Nachman, I.2    Peér, D.3
  • 11
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197-243.
    • (1995) Machine Learning , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 13
    • 0004280606 scopus 로고
    • PhD. Thesis; Technical Report No. TR-90-04). Stanford University, Department of Computer Science
    • Kaelbling, L. P. (1990). Learning in Embedded Systems. PhD. Thesis; Technical Report No. TR-90-04). Stanford University, Department of Computer Science.
    • (1990) Learning in Embedded Systems
    • Kaelbling, L.P.1
  • 14
    • 0001923944 scopus 로고
    • Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation
    • Morgan Kaufmann
    • Maron, O., & Moore, A. (1993). Hoeffding Races: Accelerating Model Selection Search for Classification and Function Approximation. Advances in NIPS 6. Morgan Kaufmann.
    • (1993) Advances in NIPS , vol.6
    • Maron, O.1    Moore, A.2
  • 15
    • 0001828003 scopus 로고    scopus 로고
    • Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets
    • Moore, A. W., & Lee, M. S. (1998). Cached Sufficient Statistics for Efficient Machine Learning with Large Datasets. JAIR, 8, 67-91.
    • (1998) JAIR , vol.8 , pp. 67-91
    • Moore, A.W.1    Lee, M.S.2
  • 16
    • 1942514735 scopus 로고    scopus 로고
    • Real-valued All-Dimensions search: Low-overhead rapid searching over subsets of attributes
    • Moore, A. W., & Schneider, J. (2002). Real-valued All-Dimensions search: Low-overhead rapid searching over subsets of attributes. Conference on UAI (pp. 360-369).
    • (2002) Conference on UAI , pp. 360-369
    • Moore, A.W.1    Schneider, J.2
  • 17
    • 1942482607 scopus 로고    scopus 로고
    • The Edinburgh/Durham Southern Galaxy Catalogue -IX
    • Nichol, R. C., Collins, C. A., & Lumsden, S. L. (2000). The Edinburgh/Durham Southern Galaxy Catalogue -IX. The Galaxy Catalogue, http://xxx.lanl.gov/abs/astro-ph/0008184.
    • (2000) The Galaxy Catalogue
    • Nichol, R.C.1    Collins, C.A.2    Lumsden, S.L.3
  • 18
    • 84922369401 scopus 로고    scopus 로고
    • Using Tarjan's Red Rule for Fast Dependency Tree Construction
    • Morgan Kaufmann
    • Pelleg, D., & Moore, A. W. (2002). Using Tarjan's Red Rule for Fast Dependency Tree Construction. NIPS 15. Morgan Kaufmann.
    • (2002) NIPS , vol.15
    • Pelleg, D.1    Moore, A.W.2
  • 19
    • 0000120766 scopus 로고
    • Estimating the dimensions of a model
    • Schwanz, G. (1979). Estimating the dimensions of a model. Annals of Statistics, 6, 461-464.
    • (1979) Annals of Statistics , vol.6 , pp. 461-464
    • Schwanz, G.1
  • 20
    • 0030783296 scopus 로고    scopus 로고
    • A microscopic study of minimum entropy search in learning decomposable markov networks
    • Xiang, Y., Wong, S., & Cereone, N. (1997). A microscopic study of minimum entropy search in learning decomposable markov networks. Machine Learning, 26, 65-92.
    • (1997) Machine Learning , vol.26 , pp. 65-92
    • Xiang, Y.1    Wong, S.2    Cereone, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.