-
1
-
-
70649111792
-
-
MIT Press, Cambridge, MA, USA
-
Koller D., Friedman N. Probabilistic graphical models: principles and techniques 2009, MIT Press, Cambridge, MA, USA.
-
(2009)
Probabilistic graphical models: principles and techniques
-
-
Koller, D.1
Friedman, N.2
-
7
-
-
34249761849
-
Learning Bayesian networks: the combination of knowledge and statistical data
-
available as Microsoft Technical Report MSR-TR-94-09
-
Heckerman D., Geiger D., Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 1995, 20(3):197-243. available as Microsoft Technical Report MSR-TR-94-09.
-
(1995)
Machine Learning
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
8
-
-
0004675530
-
Learning Gaussian networks
-
Washington, Microsoft Technical Report MSR-TR-94-10; 1994.
-
Geiger D, Heckerman D. Learning Gaussian networks, Tech. rep., Microsoft Research, Redmond, Washington, Microsoft Technical Report MSR-TR-94-10; 1994.
-
Tech. rep., Microsoft Research, Redmond
-
-
Geiger, D.1
Heckerman, D.2
-
10
-
-
33845523872
-
A robust procedure for Gaussian graphical model search from microarray data with p larger than n
-
Castelo R., Roverato A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. Journal of Machine Learning Research 2006, 7:2621-2650.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2621-2650
-
-
Castelo, R.1
Roverato, A.2
-
11
-
-
0002219642
-
Learning Bayesian network structure from massive datasets: the " sparse candidate" algorithm
-
Morgan Kaufmann, K.B. Laskey, H. Prade (Eds.)
-
Friedman N., Pe'er D., Nachman I. Learning Bayesian network structure from massive datasets: the " sparse candidate" algorithm. Proceedings of 15th conference on uncertainty in artificial intelligence (UAI) 1999, 206-221. Morgan Kaufmann. K.B. Laskey, H. Prade (Eds.).
-
(1999)
Proceedings of 15th conference on uncertainty in artificial intelligence (UAI)
, pp. 206-221
-
-
Friedman, N.1
Pe'er, D.2
Nachman, I.3
-
12
-
-
84929843809
-
Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma
-
Springer, E.T. Keravnou, C. Garbay, R.H. Baud, J.C. Wyatt (Eds.)
-
Larrañaga P., Sierra B., Gallego M.J., Michelena M.J., Picaza J.M. Learning Bayesian networks by genetic algorithms: a case study in the prediction of survival in malignant skin melanoma. Proceedings of the 6th conference on artificial intelligence in medicine in Europe (AIME) 1997, 261-272. Springer. E.T. Keravnou, C. Garbay, R.H. Baud, J.C. Wyatt (Eds.).
-
(1997)
Proceedings of the 6th conference on artificial intelligence in medicine in Europe (AIME)
, pp. 261-272
-
-
Larrañaga, P.1
Sierra, B.2
Gallego, M.J.3
Michelena, M.J.4
Picaza, J.M.5
-
13
-
-
33746035971
-
The Max-Min Hill-Climbing Bayesian network structure learning algorithm
-
Tsamardinos I., Brown L.E., Aliferis C.F. The Max-Min Hill-Climbing Bayesian network structure learning algorithm. Machine Learning 2006, 65(1):31-78.
-
(2006)
Machine Learning
, vol.65
, Issue.1
, pp. 31-78
-
-
Tsamardinos, I.1
Brown, L.E.2
Aliferis, C.F.3
-
16
-
-
0002219642
-
Data analysis with Bayesian networks: a bootstrap approach
-
Morgan Kaufmann, K.B. Laskey, H. Prade (Eds.)
-
Friedman N., Goldszmidt M., Wyner A. Data analysis with Bayesian networks: a bootstrap approach. Proceedings of the 15th annual conference on uncertainty in artificial intelligence (UAI) 1999, 206-215. Morgan Kaufmann. K.B. Laskey, H. Prade (Eds.).
-
(1999)
Proceedings of the 15th annual conference on uncertainty in artificial intelligence (UAI)
, pp. 206-215
-
-
Friedman, N.1
Goldszmidt, M.2
Wyner, A.3
-
19
-
-
0344464762
-
Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
-
Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19:2271-2282.
-
(2003)
Bioinformatics
, vol.19
, pp. 2271-2282
-
-
Husmeier, D.1
-
20
-
-
78650875469
-
Functional relationships between genes associated with differentiation potential of aged myogenic progenitors
-
Nagarajan R., Datta S., Scutari M., Beggs M.L., Nolen G.T., Peterson C.A. Functional relationships between genes associated with differentiation potential of aged myogenic progenitors. Frontiers in Physiology 2010, 1(21):1-8.
-
(2010)
Frontiers in Physiology
, vol.1
, Issue.21
, pp. 1-8
-
-
Nagarajan, R.1
Datta, S.2
Scutari, M.3
Beggs, M.L.4
Nolen, G.T.5
Peterson, C.A.6
-
21
-
-
17644427718
-
Causal protein-signaling networks derived from multiparameter single-cell data
-
Sachs K., Perez O., Pe'er D., Lauffenburger D.A., Nolan G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308(5721):523-529.
-
(2005)
Science
, vol.308
, Issue.5721
, pp. 523-529
-
-
Sachs, K.1
Perez, O.2
Pe'er, D.3
Lauffenburger, D.A.4
Nolan, G.P.5
-
22
-
-
0004047518
-
-
Oxford University Press, Oxford, UK
-
Lauritzen S.L. Graphical models 1996, Oxford University Press, Oxford, UK.
-
(1996)
Graphical models
-
-
Lauritzen, S.L.1
-
23
-
-
0042967741
-
Optimal structure identification with greedy search
-
Chickering D.M. Optimal structure identification with greedy search. Journal of Machine Learning Research 2002, 3:507-554.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 507-554
-
-
Chickering, D.M.1
-
24
-
-
0004234657
-
-
Addison-Wesley, Reading, MA, USA
-
DeGroot M.H., Schervish M.J. Probability and statistics 2011, Addison-Wesley, Reading, MA, USA. 4th ed.
-
(2011)
Probability and statistics
-
-
DeGroot, M.H.1
Schervish, M.J.2
-
25
-
-
0004038327
-
-
Graylock Press, Rochester, New York, USA
-
Kolmogorov A.N., Fomin S.V. Elements of the theory of functions and functional analysis 1957, Graylock Press, Rochester, New York, USA.
-
(1957)
Elements of the theory of functions and functional analysis
-
-
Kolmogorov, A.N.1
Fomin, S.V.2
-
26
-
-
60949114079
-
-
Now Publishers Inc., Boston, MA, USA
-
Csiszár I., Shields P. Information theory and statistics: a tutorial 2004, Now Publishers Inc., Boston, MA, USA.
-
(2004)
Information theory and statistics: a tutorial
-
-
Csiszár, I.1
Shields, P.2
-
28
-
-
0002460150
-
The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks
-
Springer-Verlag, J. Hunter, J. Cookson, J. Wyatt (Eds.)
-
Beinlich I.A., Suermondt H.J., Chavez R.M., Cooper G.F. The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks. Proceedings of the 2nd European conference on artificial intelligence in medicine (AIME) 1989, 247-256. Springer-Verlag. J. Hunter, J. Cookson, J. Wyatt (Eds.).
-
(1989)
Proceedings of the 2nd European conference on artificial intelligence in medicine (AIME)
, pp. 247-256
-
-
Beinlich, I.A.1
Suermondt, H.J.2
Chavez, R.M.3
Cooper, G.F.4
-
29
-
-
0030095171
-
Hailfinder: a Bayesian system for forecasting severe weather
-
Abramson B., Brown J., Edwards W., Murphy A., Winkler R.L. Hailfinder: a Bayesian system for forecasting severe weather. International Journal of Forecasting 1996, 12(1):57-71.
-
(1996)
International Journal of Forecasting
, vol.12
, Issue.1
, pp. 57-71
-
-
Abramson, B.1
Brown, J.2
Edwards, W.3
Murphy, A.4
Winkler, R.L.5
-
30
-
-
0031273462
-
Adaptive probabilistic networks with hidden variables
-
Binder J., Koller D., Russell S., Kanazawa K. Adaptive probabilistic networks with hidden variables. Machine Learning 1997, 29(2-3):213-244.
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 213-244
-
-
Binder, J.1
Koller, D.2
Russell, S.3
Kanazawa, K.4
-
31
-
-
1642397083
-
Algorithms for large scale Markov blanket discovery
-
AAAI Press, I. Russell, S.M. Haller (Eds.)
-
Tsamardinos I., Aliferis C.F., Statnikov A. Algorithms for large scale Markov blanket discovery. Proceedings of the 16th international Florida artificial intelligence research society conference 2003, 376-381. AAAI Press. I. Russell, S.M. Haller (Eds.).
-
(2003)
Proceedings of the 16th international Florida artificial intelligence research society conference
, pp. 376-381
-
-
Tsamardinos, I.1
Aliferis, C.F.2
Statnikov, A.3
-
32
-
-
34347345603
-
Learning Bayesian network model structure from data. Ph.D. thesis
-
School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, Available as Technical Report CMU-CS-03-153; May 2003.
-
Margaritis D. Learning Bayesian network model structure from data. Ph.D. thesis. School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, Available as Technical Report CMU-CS-03-153; May 2003.
-
-
-
Margaritis, D.1
-
33
-
-
68949161935
-
Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
-
Hausser J., Strimmer K. Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. Statistical Applications in Genetics and Molecular Biology 2009, 10:1469-1484.
-
(2009)
Statistical Applications in Genetics and Molecular Biology
, vol.10
, pp. 1469-1484
-
-
Hausser, J.1
Strimmer, K.2
-
35
-
-
77955124773
-
Learning Bayesian networks with the bnlearn R package
-
Scutari M. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software 2010, 35(3):1-22.
-
(2010)
Journal of Statistical Software
, vol.35
, Issue.3
, pp. 1-22
-
-
Scutari, M.1
-
36
-
-
84864025328
-
R Development Core Team
-
R Foundation for Statistical Computing, Vienna, Austria
-
R Development Core Team R: a language and environment for statistical computing 2011, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
-
(2011)
R: a language and environment for statistical computing
-
-
-
37
-
-
84866045800
-
Bayesian network structure learning with permutation tests
-
Special issue " Statistics for complex problems: permutation testing methods and related topics" . Proceedings of the conference " statistics for complex problems: the multivariate permutation approach and related topics" , Padova, June 14-15, 2010
-
Scutari M., Brogini A. Bayesian network structure learning with permutation tests. Communications in Statistics - Theory and Methods 2012, 41(16-17):3233-3243. Special issue " Statistics for complex problems: permutation testing methods and related topics" . Proceedings of the conference " statistics for complex problems: the multivariate permutation approach and related topics" , Padova, June 14-15, 2010.
-
(2012)
Communications in Statistics - Theory and Methods
, vol.41
, Issue.16-17
, pp. 3233-3243
-
-
Scutari, M.1
Brogini, A.2
-
39
-
-
33748876168
-
Bootstrap analysis of gene networks based on Bayesian networks and nonparametric regression
-
Imoto S., Kim S.Y., Shimodaira H., Aburatani S., Tashiro K., Kuhara S., et al. Bootstrap analysis of gene networks based on Bayesian networks and nonparametric regression. Genome Informatics 2002, 13:369-370.
-
(2002)
Genome Informatics
, vol.13
, pp. 369-370
-
-
Imoto, S.1
Kim, S.Y.2
Shimodaira, H.3
Aburatani, S.4
Tashiro, K.5
Kuhara, S.6
|