메뉴 건너뛰기




Volumn 57, Issue 3, 2013, Pages 207-217

Identifying significant edges in graphical models of molecular networks

Author keywords

Bayesian networks; Graphical models; L1 norm; Model averaging; Molecular networks

Indexed keywords

BIOLOGICAL SIGNIFICANCE; CUMULATIVE DISTRIBUTION FUNCTION; GRAPHICAL MODEL; L1 NORM; MODEL AVERAGING; MOLECULAR NETWORKS; PROTEIN EXPRESSION PROFILES; STRUCTURE LEARNING ALGORITHM;

EID: 84876705387     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2012.12.006     Document Type: Article
Times cited : (145)

References (41)
  • 7
    • 34249761849 scopus 로고
    • Learning Bayesian networks: the combination of knowledge and statistical data
    • available as Microsoft Technical Report MSR-TR-94-09
    • Heckerman D., Geiger D., Chickering D.M. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning 1995, 20(3):197-243. available as Microsoft Technical Report MSR-TR-94-09.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 10
    • 33845523872 scopus 로고    scopus 로고
    • A robust procedure for Gaussian graphical model search from microarray data with p larger than n
    • Castelo R., Roverato A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n. Journal of Machine Learning Research 2006, 7:2621-2650.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2621-2650
    • Castelo, R.1    Roverato, A.2
  • 11
  • 13
    • 33746035971 scopus 로고    scopus 로고
    • The Max-Min Hill-Climbing Bayesian network structure learning algorithm
    • Tsamardinos I., Brown L.E., Aliferis C.F. The Max-Min Hill-Climbing Bayesian network structure learning algorithm. Machine Learning 2006, 65(1):31-78.
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 31-78
    • Tsamardinos, I.1    Brown, L.E.2    Aliferis, C.F.3
  • 19
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19:2271-2282.
    • (2003) Bioinformatics , vol.19 , pp. 2271-2282
    • Husmeier, D.1
  • 20
    • 78650875469 scopus 로고    scopus 로고
    • Functional relationships between genes associated with differentiation potential of aged myogenic progenitors
    • Nagarajan R., Datta S., Scutari M., Beggs M.L., Nolen G.T., Peterson C.A. Functional relationships between genes associated with differentiation potential of aged myogenic progenitors. Frontiers in Physiology 2010, 1(21):1-8.
    • (2010) Frontiers in Physiology , vol.1 , Issue.21 , pp. 1-8
    • Nagarajan, R.1    Datta, S.2    Scutari, M.3    Beggs, M.L.4    Nolen, G.T.5    Peterson, C.A.6
  • 21
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • Sachs K., Perez O., Pe'er D., Lauffenburger D.A., Nolan G.P. Causal protein-signaling networks derived from multiparameter single-cell data. Science 2005, 308(5721):523-529.
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 22
    • 0004047518 scopus 로고    scopus 로고
    • Oxford University Press, Oxford, UK
    • Lauritzen S.L. Graphical models 1996, Oxford University Press, Oxford, UK.
    • (1996) Graphical models
    • Lauritzen, S.L.1
  • 23
    • 0042967741 scopus 로고    scopus 로고
    • Optimal structure identification with greedy search
    • Chickering D.M. Optimal structure identification with greedy search. Journal of Machine Learning Research 2002, 3:507-554.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 507-554
    • Chickering, D.M.1
  • 30
    • 0031273462 scopus 로고    scopus 로고
    • Adaptive probabilistic networks with hidden variables
    • Binder J., Koller D., Russell S., Kanazawa K. Adaptive probabilistic networks with hidden variables. Machine Learning 1997, 29(2-3):213-244.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 213-244
    • Binder, J.1    Koller, D.2    Russell, S.3    Kanazawa, K.4
  • 32
    • 34347345603 scopus 로고    scopus 로고
    • Learning Bayesian network model structure from data. Ph.D. thesis
    • School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, Available as Technical Report CMU-CS-03-153; May 2003.
    • Margaritis D. Learning Bayesian network model structure from data. Ph.D. thesis. School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA, Available as Technical Report CMU-CS-03-153; May 2003.
    • Margaritis, D.1
  • 33
    • 68949161935 scopus 로고    scopus 로고
    • Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks
    • Hausser J., Strimmer K. Entropy inference and the James-Stein estimator, with application to nonlinear gene association networks. Statistical Applications in Genetics and Molecular Biology 2009, 10:1469-1484.
    • (2009) Statistical Applications in Genetics and Molecular Biology , vol.10 , pp. 1469-1484
    • Hausser, J.1    Strimmer, K.2
  • 35
    • 77955124773 scopus 로고    scopus 로고
    • Learning Bayesian networks with the bnlearn R package
    • Scutari M. Learning Bayesian networks with the bnlearn R package. Journal of Statistical Software 2010, 35(3):1-22.
    • (2010) Journal of Statistical Software , vol.35 , Issue.3 , pp. 1-22
    • Scutari, M.1
  • 36
    • 84864025328 scopus 로고    scopus 로고
    • R Development Core Team
    • R Foundation for Statistical Computing, Vienna, Austria
    • R Development Core Team R: a language and environment for statistical computing 2011, R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.
    • (2011) R: a language and environment for statistical computing
  • 37
    • 84866045800 scopus 로고    scopus 로고
    • Bayesian network structure learning with permutation tests
    • Special issue " Statistics for complex problems: permutation testing methods and related topics" . Proceedings of the conference " statistics for complex problems: the multivariate permutation approach and related topics" , Padova, June 14-15, 2010
    • Scutari M., Brogini A. Bayesian network structure learning with permutation tests. Communications in Statistics - Theory and Methods 2012, 41(16-17):3233-3243. Special issue " Statistics for complex problems: permutation testing methods and related topics" . Proceedings of the conference " statistics for complex problems: the multivariate permutation approach and related topics" , Padova, June 14-15, 2010.
    • (2012) Communications in Statistics - Theory and Methods , vol.41 , Issue.16-17 , pp. 3233-3243
    • Scutari, M.1    Brogini, A.2
  • 39
    • 33748876168 scopus 로고    scopus 로고
    • Bootstrap analysis of gene networks based on Bayesian networks and nonparametric regression
    • Imoto S., Kim S.Y., Shimodaira H., Aburatani S., Tashiro K., Kuhara S., et al. Bootstrap analysis of gene networks based on Bayesian networks and nonparametric regression. Genome Informatics 2002, 13:369-370.
    • (2002) Genome Informatics , vol.13 , pp. 369-370
    • Imoto, S.1    Kim, S.Y.2    Shimodaira, H.3    Aburatani, S.4    Tashiro, K.5    Kuhara, S.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.