메뉴 건너뛰기




Volumn 43, Issue , 2014, Pages 3-19

Short-term traffic forecasting: Where we are and where we're going

Author keywords

Computational intelligence; Intelligent Transportation Systems; Prediction models; Responsive algorithms; Short term traffic; Time series analysis

Indexed keywords

ARTIFICIAL INTELLIGENCE; INTELLIGENT COMPUTING; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; PREDICTIVE ANALYTICS; TIME SERIES ANALYSIS; TRAFFIC CONTROL; TRAVEL TIME;

EID: 84902550333     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2014.01.005     Document Type: Article
Times cited : (1023)

References (178)
  • 1
    • 84862149193 scopus 로고    scopus 로고
    • Forecasting of short-term traffic-flow based on improved neurofuzzy models via emotional temporal difference learning algorithm
    • Abdi J., Moshiri B., Abdulhai B., Sedigh A.K. Forecasting of short-term traffic-flow based on improved neurofuzzy models via emotional temporal difference learning algorithm. Engineering Applications of Artificial Intelligence 2012, 25(5):1022-1042.
    • (2012) Engineering Applications of Artificial Intelligence , vol.25 , Issue.5 , pp. 1022-1042
    • Abdi, J.1    Moshiri, B.2    Abdulhai, B.3    Sedigh, A.K.4
  • 3
    • 79960065528 scopus 로고    scopus 로고
    • Modeling arterial travel time with limited traffic variables using conditional independence graphs & state-space neural networks
    • Abu-Lebdeha G., Singh A.K. Modeling arterial travel time with limited traffic variables using conditional independence graphs & state-space neural networks. Procedia Social and Behavioral Sciences 2011, 16:207-217.
    • (2011) Procedia Social and Behavioral Sciences , vol.16 , pp. 207-217
    • Abu-Lebdeha, G.1    Singh, A.K.2
  • 5
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data by using Box-Jenkins techniques
    • Ahmed M.S., Cook A.R. Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Record 1979, 722:1-9.
    • (1979) Transportation Research Record , vol.722 , pp. 1-9
    • Ahmed, M.S.1    Cook, A.R.2
  • 6
    • 14744282511 scopus 로고    scopus 로고
    • Hybrid model-based and memory-based traffic prediction system
    • Alecsandru C., Ishak S. Hybrid model-based and memory-based traffic prediction system. Transportation Research Record 2004, 1879:59-70.
    • (2004) Transportation Research Record , vol.1879 , pp. 59-70
    • Alecsandru, C.1    Ishak, S.2
  • 7
    • 79958760673 scopus 로고    scopus 로고
    • Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks
    • Bhaskar A., Chung E., Dumont A.-G. Fusing loop detector and probe vehicle data to estimate travel time statistics on signalized urban networks. Computer-Aided Civil and Infrastructure Engineering 2011, 26:433-450.
    • (2011) Computer-Aided Civil and Infrastructure Engineering , vol.26 , pp. 433-450
    • Bhaskar, A.1    Chung, E.2    Dumont, A.-G.3
  • 10
    • 84855226756 scopus 로고    scopus 로고
    • Real-Time Freeway-Experienced Travel Time Prediction Using N-Curve and k Nearest Neighbor Methods, Transportation Research Record
    • 2243, Transportation Research Board of the National Academies, Washington, D.C.
    • Bustillos, B.I., Chiu, Y.i-C., 2011. Real-Time Freeway-Experienced Travel Time Prediction Using N-Curve and k Nearest Neighbor Methods, Transportation Research Record: Journal of the Transportation Research Board, 2243, Transportation Research Board of the National Academies, Washington, D.C., 127-137.
    • (2011) Journal of the Transportation Research Board , pp. 127-137
    • Bustillos, B.I.1    Chiu, Y.I.-C.2
  • 11
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions
    • Castro-Neto M., Jeong Y.-S., Jeong M.-K., Han L.D. Online-SVR for short-term traffic flow prediction under typical and atypical traffic conditions. Expert Systems with Applications 2009, 36(3 PART 2):6164-6173.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 PART 2 , pp. 6164-6173
    • Castro-Neto, M.1    Jeong, Y.-S.2    Jeong, M.-K.3    Han, L.D.4
  • 13
    • 33847119831 scopus 로고    scopus 로고
    • Short-term traffic flow prediction with regime switching models
    • Cetin M., Comert G. Short-term traffic flow prediction with regime switching models. Transportation Research Record 2006, 1965:23-31.
    • (2006) Transportation Research Record , vol.1965 , pp. 23-31
    • Cetin, M.1    Comert, G.2
  • 14
    • 84861893114 scopus 로고    scopus 로고
    • Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg-marquardt algorithm
    • Chan K.Y., Dillon T.S., Singh J., Chang E. Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg-marquardt algorithm. IEEE Transactions on Intelligent Transportation Systems 2012, 13(2):644-654.
    • (2012) IEEE Transactions on Intelligent Transportation Systems , vol.13 , Issue.2 , pp. 644-654
    • Chan, K.Y.1    Dillon, T.S.2    Singh, J.3    Chang, E.4
  • 16
    • 84871806794 scopus 로고    scopus 로고
    • Prediction of short-term traffic variables using intelligent swarm-based neural networks
    • Chan K.Y., Dillon T., Chang E., Singh J. Prediction of short-term traffic variables using intelligent swarm-based neural networks. IEEE Transactions on Control Systems Technology 2013, 21(1):263-274.
    • (2013) IEEE Transactions on Control Systems Technology , vol.21 , Issue.1 , pp. 263-274
    • Chan, K.Y.1    Dillon, T.2    Chang, E.3    Singh, J.4
  • 17
    • 56749160623 scopus 로고    scopus 로고
    • Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds
    • Chandra S.R., Al-Deek H. Cross-correlation analysis and multivariate prediction of spatial time series of freeway traffic speeds. Transportation Research Record 2008, 2061:64-76.
    • (2008) Transportation Research Record , vol.2061 , pp. 64-76
    • Chandra, S.R.1    Al-Deek, H.2
  • 19
    • 80054839021 scopus 로고    scopus 로고
    • Dynamic traffic prediction for insufficient data roadways via automatic control theories
    • Chang T.-H., Chueh C.-H., Yang L.-K. Dynamic traffic prediction for insufficient data roadways via automatic control theories. Control Engineering Practice 2011, 19(12):1479-1489.
    • (2011) Control Engineering Practice , vol.19 , Issue.12 , pp. 1479-1489
    • Chang, T.-H.1    Chueh, C.-H.2    Yang, L.-K.3
  • 20
    • 84865250900 scopus 로고    scopus 로고
    • Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences
    • Chang H., Lee Y., Yoon B., Baek S. Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences. IET Intelligent Transportation Systems 2012, 6:292.
    • (2012) IET Intelligent Transportation Systems , vol.6 , pp. 292
    • Chang, H.1    Lee, Y.2    Yoon, B.3    Baek, S.4
  • 21
    • 84865250900 scopus 로고    scopus 로고
    • Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences
    • Chang H., Lee Y., Yoon B., Baek S. Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences. IET Intelligent Transport Systems 2012, 6(3):292-305.
    • (2012) IET Intelligent Transport Systems , vol.6 , Issue.3 , pp. 292-305
    • Chang, H.1    Lee, Y.2    Yoon, B.3    Baek, S.4
  • 22
    • 0035567818 scopus 로고    scopus 로고
    • A study of hybrid neural network approaches and the effects of missing data on traffic forecasting
    • Chen H., Grant-Muller S., Mussone L., Montgomery F. A study of hybrid neural network approaches and the effects of missing data on traffic forecasting. Neural Computing & Applications 2001, 10:277-286.
    • (2001) Neural Computing & Applications , vol.10 , pp. 277-286
    • Chen, H.1    Grant-Muller, S.2    Mussone, L.3    Montgomery, F.4
  • 23
    • 77958099305 scopus 로고    scopus 로고
    • Time-series forecasting using a system of ordinary differential equations
    • Chen Y., Yang B., Meng Q., Zhao Y., Abraham A. Time-series forecasting using a system of ordinary differential equations. Information Sciences 2011, 181(1):106-114.
    • (2011) Information Sciences , vol.181 , Issue.1 , pp. 106-114
    • Chen, Y.1    Yang, B.2    Meng, Q.3    Zhao, Y.4    Abraham, A.5
  • 28
    • 45249128876 scopus 로고
    • Combining forecasts: a review and annotated bibliography (with discussion)
    • Clemen R.T. Combining forecasts: a review and annotated bibliography (with discussion). International Journal of Forecasting 1989, 5:559-583.
    • (1989) International Journal of Forecasting , vol.5 , pp. 559-583
    • Clemen, R.T.1
  • 30
    • 33745153428 scopus 로고    scopus 로고
    • Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates
    • Dion F., Rakha H. Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates. Transportation Research Part B 2006, 40(9):745-766.
    • (2006) Transportation Research Part B , vol.40 , Issue.9 , pp. 745-766
    • Dion, F.1    Rakha, H.2
  • 32
    • 79952410534 scopus 로고    scopus 로고
    • Evaluation of usability of intellidrive probe vehicle data for transportation systems performance analysis
    • Dion F., Robinson R., Oh J. Evaluation of usability of intellidrive probe vehicle data for transportation systems performance analysis. Journal of Transportation Engineering 2011, 137(3):174-183.
    • (2011) Journal of Transportation Engineering , vol.137 , Issue.3 , pp. 174-183
    • Dion, F.1    Robinson, R.2    Oh, J.3
  • 34
    • 80855130320 scopus 로고    scopus 로고
    • An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks
    • Du L., Peeta S., Kim Y.H. An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks. Transportation Research Part B: Methodological 2012, 46(1):235-252.
    • (2012) Transportation Research Part B: Methodological , vol.46 , Issue.1 , pp. 235-252
    • Du, L.1    Peeta, S.2    Kim, Y.H.3
  • 35
    • 84859981806 scopus 로고    scopus 로고
    • Regime-based short-term multivariate traffic condition forecasting algorithm
    • Dunne S., Ghosh B. Regime-based short-term multivariate traffic condition forecasting algorithm. Journal of Transportation Engineering 2012, 138(4):455-466.
    • (2012) Journal of Transportation Engineering , vol.138 , Issue.4 , pp. 455-466
    • Dunne, S.1    Ghosh, B.2
  • 36
    • 77956963824 scopus 로고    scopus 로고
    • Data fusion in intelligent transportation systems: Progress and challenges-A survey
    • Faouzi Nour-Eddin El, Leung Henry, Kurian Ajeesh Data fusion in intelligent transportation systems: Progress and challenges-A survey. Information Fusion 2011, 12(1):4-10.
    • (2011) Information Fusion , vol.12 , Issue.1 , pp. 4-10
    • Faouzi, N.E.E.1    Leung, H.2    Kurian, A.3
  • 37
    • 80052718938 scopus 로고    scopus 로고
    • Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction
    • Fei X., Lu C.-C., Liu K.A. Bayesian dynamic linear model approach for real-time short-term freeway travel time prediction. Transportation Research Part C: Emerging Technologies 2011, 19(6):1306-1318.
    • (2011) Transportation Research Part C: Emerging Technologies , vol.19 , Issue.6 , pp. 1306-1318
    • Fei, X.1    Lu, C.-C.2    Liu, K.A.3
  • 41
    • 33847182046 scopus 로고    scopus 로고
    • Bayesian time-series model for short-term traffic flow forecasting
    • Ghosh B., Basu B., O'Mahony M. Bayesian time-series model for short-term traffic flow forecasting. Journal of Transportation Engineering 2007, 133(3):180-189.
    • (2007) Journal of Transportation Engineering , vol.133 , Issue.3 , pp. 180-189
    • Ghosh, B.1    Basu, B.2    O'Mahony, M.3
  • 43
    • 78651110324 scopus 로고    scopus 로고
    • Random process model for urban traffic flow using a Wavelet-Bayesian hierarchical technique
    • Ghosh B., Basu B., O'Mahony M. Random process model for urban traffic flow using a Wavelet-Bayesian hierarchical technique. Computer-Aided Civil and Infrastructure Engineering 2010, 25(8):613-624.
    • (2010) Computer-Aided Civil and Infrastructure Engineering , vol.25 , Issue.8 , pp. 613-624
    • Ghosh, B.1    Basu, B.2    O'Mahony, M.3
  • 44
    • 78651271213 scopus 로고    scopus 로고
    • Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters
    • Guo J., Williams B.M. Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters. Transportation Research Record 2010, 2175:28-37.
    • (2010) Transportation Research Record , vol.2175 , pp. 28-37
    • Guo, J.1    Williams, B.M.2
  • 46
    • 84876721756 scopus 로고    scopus 로고
    • Integrated heteroscedasticity test for vehicular traffic condition series
    • Guo J., Huang W., Williams B. Integrated heteroscedasticity test for vehicular traffic condition series. Journal of Transportation Engineering 2012, 138(9):1161-1170.
    • (2012) Journal of Transportation Engineering , vol.138 , Issue.9 , pp. 1161-1170
    • Guo, J.1    Huang, W.2    Williams, B.3
  • 47
    • 84871109296 scopus 로고    scopus 로고
    • A computationally efficient two-stage method for short-term traffic prediction on urban roads
    • Guo F., Krishnan R., Polak J. A computationally efficient two-stage method for short-term traffic prediction on urban roads. Transportation Planning and Technology 2013, 36(1):62-75.
    • (2013) Transportation Planning and Technology , vol.36 , Issue.1 , pp. 62-75
    • Guo, F.1    Krishnan, R.2    Polak, J.3
  • 49
    • 84869869112 scopus 로고    scopus 로고
    • Non-parametric regression for space-time forecasting under missing data
    • Haworth J., Cheng T. Non-parametric regression for space-time forecasting under missing data. Computers, Environment and Urban Systems 2012, 36(6):538-550.
    • (2012) Computers, Environment and Urban Systems , vol.36 , Issue.6 , pp. 538-550
    • Haworth, J.1    Cheng, T.2
  • 51
    • 77952675249 scopus 로고    scopus 로고
    • Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment
    • Herrera Juan C., et al. Evaluation of traffic data obtained via GPS-enabled mobile phones: The Mobile Century field experiment. Transportation Research Part C: Emerging Technologies 2010, 18(4):568-583.
    • (2010) Transportation Research Part C: Emerging Technologies , vol.18 , Issue.4 , pp. 568-583
    • Herrera, J.C.1
  • 52
    • 79956119798 scopus 로고    scopus 로고
    • Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm
    • Hong W.-C. Traffic flow forecasting by seasonal SVR with chaotic simulated annealing algorithm. Neurocomputing 2011, 74(12-13):2096-2107.
    • (2011) Neurocomputing , vol.74 , Issue.12-13 , pp. 2096-2107
    • Hong, W.-C.1
  • 53
    • 84858160566 scopus 로고    scopus 로고
    • Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting
    • Hong W.-C. Application of seasonal SVR with chaotic immune algorithm in traffic flow forecasting. Neural Computing and Applications 2012, 21(3):583-593.
    • (2012) Neural Computing and Applications , vol.21 , Issue.3 , pp. 583-593
    • Hong, W.-C.1
  • 55
    • 79952362137 scopus 로고    scopus 로고
    • Hybrid evolutionary algorithms in a SVR traffic flow forecasting model
    • Hong W.-C., Dong Y., Zheng F., Wei S.Y. Hybrid evolutionary algorithms in a SVR traffic flow forecasting model. Applied Mathematics and Computation 2011, 217(15):6733-6747.
    • (2011) Applied Mathematics and Computation , vol.217 , Issue.15 , pp. 6733-6747
    • Hong, W.-C.1    Dong, Y.2    Zheng, F.3    Wei, S.Y.4
  • 56
    • 67651165051 scopus 로고    scopus 로고
    • Chun-Hsiao Chu, Identification of vehicle sensor locations for link-based network traffic applications
    • Hu Sh.-R., Peeta S. Chun-Hsiao Chu, Identification of vehicle sensor locations for link-based network traffic applications. Transportation Research Part B: Methodological 2009, 43(8-9):873-894.
    • (2009) Transportation Research Part B: Methodological , vol.43 , Issue.8-9 , pp. 873-894
    • Hu, S.-R.1    Peeta, S.2
  • 57
    • 67949085060 scopus 로고    scopus 로고
    • A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting
    • Huang S., Sadek A.W. A novel forecasting approach inspired by human memory: the example of short-term traffic volume forecasting. Transportation Research Part C: Emerging Technologies 2009, 17(5):510-525.
    • (2009) Transportation Research Part C: Emerging Technologies , vol.17 , Issue.5 , pp. 510-525
    • Huang, S.1    Sadek, A.W.2
  • 58
    • 25144524732 scopus 로고    scopus 로고
    • Short-term prediction of travel time using neural networks on an interurban highway
    • Innamaa S. Short-term prediction of travel time using neural networks on an interurban highway. Transportation 2005, 32(6):649-669.
    • (2005) Transportation , vol.32 , Issue.6 , pp. 649-669
    • Innamaa, S.1
  • 59
    • 33745302028 scopus 로고    scopus 로고
    • Effect of monitoring system structure on short-term prediction of highway travel time
    • Innamaa S. Effect of monitoring system structure on short-term prediction of highway travel time. Transportation Planning and Technology 2006, 29(2):125-140.
    • (2006) Transportation Planning and Technology , vol.29 , Issue.2 , pp. 125-140
    • Innamaa, S.1
  • 60
    • 58149483666 scopus 로고    scopus 로고
    • Self-adapting traffic flow status forecasts using clustering
    • Innamaa S. Self-adapting traffic flow status forecasts using clustering. IET Intelligent Transport Systems 2009, 3(1):7-76.
    • (2009) IET Intelligent Transport Systems , vol.3 , Issue.1 , pp. 7-76
    • Innamaa, S.1
  • 61
    • 3242676259 scopus 로고    scopus 로고
    • Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings
    • Ishak S., Alecsandru C. Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings. Journal of Transportation Engineering 2004, 130(4):452-465.
    • (2004) Journal of Transportation Engineering , vol.130 , Issue.4 , pp. 452-465
    • Ishak, S.1    Alecsandru, C.2
  • 62
    • 78951493187 scopus 로고    scopus 로고
    • Stochastic characteristics of freeway traffic speed during breakdown and recovery periods
    • Ishak S., Mamidala C., Qi Y. Stochastic characteristics of freeway traffic speed during breakdown and recovery periods. Transportation Research Record 2010, 2178:79-89.
    • (2010) Transportation Research Record , vol.2178 , pp. 79-89
    • Ishak, S.1    Mamidala, C.2    Qi, Y.3
  • 63
    • 3242704391 scopus 로고    scopus 로고
    • Wavelet packet-autocorrelation function method for traffic flow pattern analysis
    • Jiang X., Adeli H. Wavelet packet-autocorrelation function method for traffic flow pattern analysis. Computer-Aided Civil and Infrastructure Engineering 2004, 19(5):324-337.
    • (2004) Computer-Aided Civil and Infrastructure Engineering , vol.19 , Issue.5 , pp. 324-337
    • Jiang, X.1    Adeli, H.2
  • 64
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting (2005)
    • Jiang X., Adeli H. Dynamic wavelet neural network model for traffic flow forecasting (2005). Journal of Transportation Engineering 2005, 131(10):771-779.
    • (2005) Journal of Transportation Engineering , vol.131 , Issue.10 , pp. 771-779
    • Jiang, X.1    Adeli, H.2
  • 65
    • 76749165350 scopus 로고    scopus 로고
    • Bayesian mixture model for estimating freeway travel time distributions from small probe samples from multiple days
    • Jintanakul K., Chu L., Jayakrishnan R. Bayesian mixture model for estimating freeway travel time distributions from small probe samples from multiple days. Transportation Research Record 2009, 2136:37-44.
    • (2009) Transportation Research Record , vol.2136 , pp. 37-44
    • Jintanakul, K.1    Chu, L.2    Jayakrishnan, R.3
  • 66
    • 42149185007 scopus 로고    scopus 로고
    • Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time
    • (2039)
    • Juri N.R., Unnikrishnan A., Waller S.T. Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time. Transportation Research Record 2007, 24-31. (2039).
    • (2007) Transportation Research Record , pp. 24-31
    • Juri, N.R.1    Unnikrishnan, A.2    Waller, S.T.3
  • 69
    • 84865143932 scopus 로고    scopus 로고
    • Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO
    • Kamarianakis Y., Shen W., Wynter L. Real-time road traffic forecasting using regime-switching space-time models and adaptive LASSO. Applied Stochastic Models in Business and Industry 2012, 28(4):297-315.
    • (2012) Applied Stochastic Models in Business and Industry , vol.28 , Issue.4 , pp. 297-315
    • Kamarianakis, Y.1    Shen, W.2    Wynter, L.3
  • 71
    • 79951775181 scopus 로고    scopus 로고
    • Statistics versus neural networks in transportation research: differences, similarities and some insights
    • Karlaftis M.G., Vlahogianni E.I. Statistics versus neural networks in transportation research: differences, similarities and some insights. Transportation Research Part C Emerging Technologies 2011, 19(3):387-399.
    • (2011) Transportation Research Part C Emerging Technologies , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 73
    • 84856403107 scopus 로고    scopus 로고
    • Bayesian predictive travel time methodology for advanced traveler information system
    • Khan A.M. Bayesian predictive travel time methodology for advanced traveler information system. Journal of Advanced Transportation 2012, 46(1):67-79.
    • (2012) Journal of Advanced Transportation , vol.46 , Issue.1 , pp. 67-79
    • Khan, A.M.1
  • 76
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural networks or statistical models for short term motorway forecasting?
    • Kirby H., Dougherty M., Watson S. Should we use neural networks or statistical models for short term motorway forecasting?. International Journal of Forecasting 1997, 13:45-50.
    • (1997) International Journal of Forecasting , vol.13 , pp. 45-50
    • Kirby, H.1    Dougherty, M.2    Watson, S.3
  • 77
    • 84856688500 scopus 로고    scopus 로고
    • Traffic flow forecasting and spatial data aggregation
    • Kuhn K., Nicholson A. Traffic flow forecasting and spatial data aggregation. Transportation Research Record 2011, 2260:16-23.
    • (2011) Transportation Research Record , vol.2260 , pp. 16-23
    • Kuhn, K.1    Nicholson, A.2
  • 78
    • 33646433965 scopus 로고    scopus 로고
    • A Travel Time Prediction Algorithm Scalable to Freeway Networks with Many Nodes with Arbitrary Travel Routes,
    • 1935, Transportation Research Board
    • Kwon, J, Petty, K., 2005. A Travel Time Prediction Algorithm Scalable to Freeway Networks with Many Nodes with Arbitrary Travel Routes, Transportation Research Record, 1935, Transportation Research Board, 147-153.
    • (2005) Transportation Research Record , pp. 147-153
    • Kwon, J.1    Petty, K.2
  • 79
    • 33646421626 scopus 로고    scopus 로고
    • Comparison of two non-parametric models for daily traffic forecasting in Hong Kong
    • Lam W.H.K., Tang Y.F., Tam M.-L. Comparison of two non-parametric models for daily traffic forecasting in Hong Kong. Journal of Forecasting 2006, 25(3):173-192.
    • (2006) Journal of Forecasting , vol.25 , Issue.3 , pp. 173-192
    • Lam, W.H.K.1    Tang, Y.F.2    Tam, M.-L.3
  • 80
    • 52649150876 scopus 로고    scopus 로고
    • Short-term prediction of motorway travel time using ANPR and loop data
    • Li Y. Short-term prediction of motorway travel time using ANPR and loop data. Journal of Forecasting 2008, 27(6):507-517.
    • (2008) Journal of Forecasting , vol.27 , Issue.6 , pp. 507-517
    • Li, Y.1
  • 81
    • 84885930791 scopus 로고    scopus 로고
    • Identifying important variables for predicting travel time, of freeway with non-recurrent congestion with neural networks
    • Li C.-S., Chen M.-C. Identifying important variables for predicting travel time, of freeway with non-recurrent congestion with neural networks. Neural Computing & Applications 2013, 23(6):1611-1629.
    • (2013) Neural Computing & Applications , vol.23 , Issue.6 , pp. 1611-1629
    • Li, C.-S.1    Chen, M.-C.2
  • 82
    • 79960456666 scopus 로고    scopus 로고
    • Incorporating uncertainty into short-term travel time predictions
    • Li R., Rose G. Incorporating uncertainty into short-term travel time predictions. Transportation Research Part C: Emerging Technologies 2011, 19(6):1006-1018.
    • (2011) Transportation Research Part C: Emerging Technologies , vol.19 , Issue.6 , pp. 1006-1018
    • Li, R.1    Rose, G.2
  • 84
    • 33846118451 scopus 로고    scopus 로고
    • Developments and applications of simulation-based online travel time prediction system: traveling to Ocean City, Maryland
    • Liu Y., Lin P.W., Lai X.R., Chang G.L., Marquess A. Developments and applications of simulation-based online travel time prediction system: traveling to Ocean City, Maryland. Transportation Research Record 2006, 1959:92-104.
    • (2006) Transportation Research Record , vol.1959 , pp. 92-104
    • Liu, Y.1    Lin, P.W.2    Lai, X.R.3    Chang, G.L.4    Marquess, A.5
  • 85
    • 80053378415 scopus 로고    scopus 로고
    • A Short-term forecasting algorithm for network traffic based on chaos theory and SVM
    • Liu X., Fang X., Qin Z., Ye C., Xie M. A Short-term forecasting algorithm for network traffic based on chaos theory and SVM. Journal of Network and Systems Management 2011, 19(4):427-447.
    • (2011) Journal of Network and Systems Management , vol.19 , Issue.4 , pp. 427-447
    • Liu, X.1    Fang, X.2    Qin, Z.3    Ye, C.4    Xie, M.5
  • 87
    • 84890432220 scopus 로고    scopus 로고
    • Integrated traffic and communication performance evaluation of an intelligent vehicle infrastructure integration (VII) system for online travel-time prediction
    • Ma Y., Chowdhury M., Sadek A., Jeihani M. Integrated traffic and communication performance evaluation of an intelligent vehicle infrastructure integration (VII) system for online travel-time prediction. IEEE Transactions on Intelligent Transportation Systems 2012, 13(3):1369-1382.
    • (2012) IEEE Transactions on Intelligent Transportation Systems , vol.13 , Issue.3 , pp. 1369-1382
    • Ma, Y.1    Chowdhury, M.2    Sadek, A.3    Jeihani, M.4
  • 88
    • 85029877886 scopus 로고    scopus 로고
    • Maricopa Association of Governments -MAG 2011. Private Probe Vehicle Data for Real-Time Applications: Final Report, UPWP Task Number 600-0170-11, MAG On-Call Contract 435-B, Task Order PL 11-3 September 23, 2011 accessed at: <>.
    • Maricopa Association of Governments -MAG 2011. Private Probe Vehicle Data for Real-Time Applications: Final Report, UPWP Task Number 600-0170-11, MAG On-Call Contract 435-B, Task Order PL 11-3 September 23, 2011 accessed at: <>. http://www.azmag.gov/Documents/ITS_2011-10-27_Private-Probe-Vehicle-Data-for-RealTime-Applications-Final-Report.pdf.
  • 89
    • 84873442470 scopus 로고    scopus 로고
    • A new traffic congestion prediction model for advanced traveler information and management systems
    • Article in Press
    • Marfia G., Roccetti M., Amoroso A. A new traffic congestion prediction model for advanced traveler information and management systems. Wireless Communications and Mobile Computing 2012, Article in Press.
    • (2012) Wireless Communications and Mobile Computing
    • Marfia, G.1    Roccetti, M.2    Amoroso, A.3
  • 90
    • 77955551173 scopus 로고    scopus 로고
    • A hybrid macroscopic-based model for traffic flow in road networks
    • McCrea J., Moutari S. A hybrid macroscopic-based model for traffic flow in road networks. European Journal of Operting Research 2010, 207(1):676-684.
    • (2010) European Journal of Operting Research , vol.207 , Issue.1 , pp. 676-684
    • McCrea, J.1    Moutari, S.2
  • 92
  • 94
    • 84863041488 scopus 로고    scopus 로고
    • Travel time prediction using k nearest neighbor method with combined data from vehicle detector system and automatic toll collection system
    • Myung J., Kim D.-K., Kho S.-Y., Park C.-H. Travel time prediction using k nearest neighbor method with combined data from vehicle detector system and automatic toll collection system. Transportation Research Record 2011, 2256:51-59.
    • (2011) Transportation Research Record , vol.2256 , pp. 51-59
    • Myung, J.1    Kim, D.-K.2    Kho, S.-Y.3    Park, C.-H.4
  • 95
    • 84860886975 scopus 로고    scopus 로고
    • Synergistic sensor location for link flow inference without path enumeration: A node-based approach
    • Ng ManWo Synergistic sensor location for link flow inference without path enumeration: A node-based approach. Transportation Research Part B: Methodological 2012, 46(6):781-788.
    • (2012) Transportation Research Part B: Methodological , vol.46 , Issue.6 , pp. 781-788
    • Ng, M.1
  • 96
    • 80052536395 scopus 로고    scopus 로고
    • Investigating the effects of daily travel time patterns on short-term prediction
    • Oh C., Park S. Investigating the effects of daily travel time patterns on short-term prediction. KSCE Journal of Civil Engineering 2011, 15(7):1263-1272.
    • (2011) KSCE Journal of Civil Engineering , vol.15 , Issue.7 , pp. 1263-1272
    • Oh, C.1    Park, S.2
  • 97
    • 33646393004 scopus 로고    scopus 로고
    • Exploring the relationship between data aggregation and predictability toward providing better predictive traffic information
    • Oh C., Ritchie S.G., Oh J.-S. Exploring the relationship between data aggregation and predictability toward providing better predictive traffic information. Transportation Research Record 2005, 1935:28-36.
    • (2005) Transportation Research Record , vol.1935 , pp. 28-36
    • Oh, C.1    Ritchie, S.G.2    Oh, J.-S.3
  • 100
    • 1842585244 scopus 로고    scopus 로고
    • Optimizing Aggregation Level for Intelligent Transportation System Data Based on Wavelet Decomposition
    • Qiao F., Wang X., Yu L. Optimizing Aggregation Level for Intelligent Transportation System Data Based on Wavelet Decomposition. Transportation Research Record 2003, 1840:10-20.
    • (2003) Transportation Research Record , vol.1840 , pp. 10-20
    • Qiao, F.1    Wang, X.2    Yu, L.3
  • 101
    • 0035501669 scopus 로고    scopus 로고
    • Intelligent Simulation and Prediction of Traffic Flow Dispersion
    • Qiao F., Yang H., Lam W.H.K. Intelligent Simulation and Prediction of Traffic Flow Dispersion. Transportation Research-A 2001, 35(9):843-863.
    • (2001) Transportation Research-A , vol.35 , Issue.9 , pp. 843-863
    • Qiao, F.1    Yang, H.2    Lam, W.H.K.3
  • 102
    • 14744294258 scopus 로고    scopus 로고
    • Double-Sided Determination of Aggregation Level for Intelligent Transportation System Data
    • Qiao F., Yu L., Wang X. Double-Sided Determination of Aggregation Level for Intelligent Transportation System Data. Transportation Research Record 2004, 1879:80-88.
    • (2004) Transportation Research Record , vol.1879 , pp. 80-88
    • Qiao, F.1    Yu, L.2    Wang, X.3
  • 103
    • 70349166727 scopus 로고    scopus 로고
    • PPCA-based missing data imputation for traffic flow volume: a systematical approach
    • Qu Li PPCA-based missing data imputation for traffic flow volume: a systematical approach. IEEE Transactions on Intelligent Transportation Systems 2009, 10(3):512-522.
    • (2009) IEEE Transactions on Intelligent Transportation Systems , vol.10 , Issue.3 , pp. 512-522
    • Qu, L.1
  • 106
    • 49149098226 scopus 로고    scopus 로고
    • Artificial Intelligence in Transportation: Information for Application.
    • TRB, National Research Council, Washington, D.C. Available online at: <>.
    • Sadek, A.W., (Ed.), 2007. Artificial Intelligence in Transportation: Information for Application. Transportation Research Board Circular (E-C113), TRB, National Research Council, Washington, D.C. Available online at: <>. http://onlinepubs.trb.org/onlinepubs/circulars/ec113.pdf.
    • (2007) Transportation Research Board Circular (E-C113)
    • Sadek, A.W.1
  • 107
    • 13544252457 scopus 로고    scopus 로고
    • Chaotic analysis of traffic time series Chaos
    • Shang P., Li X., Kamae S. Chaotic analysis of traffic time series Chaos. Solitons & Fractal 2005, 25:121-128.
    • (2005) Solitons & Fractal , vol.25 , pp. 121-128
    • Shang, P.1    Li, X.2    Kamae, S.3
  • 109
    • 77956396779 scopus 로고    scopus 로고
    • Short-term prediction of traffic dynamics with real-time recurrent learning algorithms
    • Sheu J.-B., Lan L.W., Huang Y.-S. Short-term prediction of traffic dynamics with real-time recurrent learning algorithms. Transportmetrica 2009, 5(1):59-83.
    • (2009) Transportmetrica , vol.5 , Issue.1 , pp. 59-83
    • Sheu, J.-B.1    Lan, L.W.2    Huang, Y.-S.3
  • 110
  • 111
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: comparison of modeling approaches
    • Smith B., Demetsky M. Traffic flow forecasting: comparison of modeling approaches. Journal of Transportation Engineering 1997, 123(4):261-266.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.1    Demetsky, M.2
  • 112
    • 78249252705 scopus 로고    scopus 로고
    • Highway travel time accurate measurement and short-term prediction using multiple data sources
    • Soriguera F., Robusté F. Highway travel time accurate measurement and short-term prediction using multiple data sources. Transportmetrica 2011, 7(1):85-109.
    • (2011) Transportmetrica , vol.7 , Issue.1 , pp. 85-109
    • Soriguera, F.1    Robusté, F.2
  • 113
    • 67349116014 scopus 로고    scopus 로고
    • Computational intelligence-based congestion prediction for a dynamic urban street network
    • Srinivasan D., Wai Chan C., Balaji P.G. Computational intelligence-based congestion prediction for a dynamic urban street network. Neurocomputing 2009, 72(10-12):2710-2716.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2710-2716
    • Srinivasan, D.1    Wai Chan, C.2    Balaji, P.G.3
  • 114
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state-space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state-space approach for urban traffic flow modeling and prediction. Transportation Research Part C 2003, 11(2):121-135.
    • (2003) Transportation Research Part C , vol.11 , Issue.2 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 117
    • 79958135902 scopus 로고    scopus 로고
    • Variational inference for infinite mixtures of gaussian processes with applications to traffic flow prediction
    • Sun S., Xu X. Variational inference for infinite mixtures of gaussian processes with applications to traffic flow prediction. IEEE Transactions on Intelligent Transportation Systems. 2011, 12(2):466-475.
    • (2011) IEEE Transactions on Intelligent Transportation Systems. , vol.12 , Issue.2 , pp. 466-475
    • Sun, S.1    Xu, X.2
  • 118
    • 34249888176 scopus 로고    scopus 로고
    • The selective random subspace predictor for traffic flow forecasting"
    • Sun S., Zhang C. The selective random subspace predictor for traffic flow forecasting". IEEE Transactions on Intelligent Transportation System 2007, 8(2):367-373.
    • (2007) IEEE Transactions on Intelligent Transportation System , vol.8 , Issue.2 , pp. 367-373
    • Sun, S.1    Zhang, C.2
  • 119
    • 84880387876 scopus 로고    scopus 로고
    • Network-scale traffic modeling and forecasting with graphical lasso and neural networks
    • Sun S., Huang R., Gao Y. Network-scale traffic modeling and forecasting with graphical lasso and neural networks. Journal of Transportation Engineering 2012, 138(11):1358-1367.
    • (2012) Journal of Transportation Engineering , vol.138 , Issue.11 , pp. 1358-1367
    • Sun, S.1    Huang, R.2    Gao, Y.3
  • 120
    • 69249196057 scopus 로고    scopus 로고
    • Multivariate traffic forecasting technique using cell transmission model and SARIMA model
    • Szeto W., Ghosh B., Basu B., O'Mahony M. Multivariate traffic forecasting technique using cell transmission model and SARIMA model. Journal of Transportation Engineering 2009, 135(9):658-667.
    • (2009) Journal of Transportation Engineering , vol.135 , Issue.9 , pp. 658-667
    • Szeto, W.1    Ghosh, B.2    Basu, B.3    O'Mahony, M.4
  • 124
    • 52149090328 scopus 로고    scopus 로고
    • Swarm intelligence systems for transportation engineering: Principles and applications
    • Teodorović D. Swarm intelligence systems for transportation engineering: Principles and applications. Transportation Research Part C: Emerging Technologies 2008, 16(6):651-667.
    • (2008) Transportation Research Part C: Emerging Technologies , vol.16 , Issue.6 , pp. 651-667
    • Teodorović, D.1
  • 126
    • 80054707230 scopus 로고    scopus 로고
    • Validation of traffic flow models with respect to the spatiotemporal evolution of congested traffic patterns
    • Treiber M., Kesting A. Validation of traffic flow models with respect to the spatiotemporal evolution of congested traffic patterns. Transportation Research Part C: Emerging Technologies 2012, 21(1):31-41.
    • (2012) Transportation Research Part C: Emerging Technologies , vol.21 , Issue.1 , pp. 31-41
    • Treiber, M.1    Kesting, A.2
  • 127
    • 77955592775 scopus 로고    scopus 로고
    • Short-term prediction of urban traffic variability: Stochastic volatility modeling approach
    • Tsekeris T., Stathopoulos A. Short-term prediction of urban traffic variability: Stochastic volatility modeling approach. Journal of Transportation Engineering 2010, 136(7):606-613.
    • (2010) Journal of Transportation Engineering , vol.136 , Issue.7 , pp. 606-613
    • Tsekeris, T.1    Stathopoulos, A.2
  • 129
    • 33646691798 scopus 로고    scopus 로고
    • Enhancing short-term traffic forecasting with traffic condition information
    • Turochy R. Enhancing short-term traffic forecasting with traffic condition information. Journal of Transportation Engineering 2006, 132(6):469-474.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.6 , pp. 469-474
    • Turochy, R.1
  • 130
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time-series models to forecast traffic flow
    • Van der Voort M., Dougherty M., Watson S. Combining Kohonen maps with ARIMA time-series models to forecast traffic flow. Transportation Research Part C 1996, 4(5):307-318.
    • (1996) Transportation Research Part C , vol.4 , Issue.5 , pp. 307-318
    • Van der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 132
    • 33751077286 scopus 로고    scopus 로고
    • Reliable real-time framework for short-term freeway travel time prediction
    • van Lint J.C. Reliable real-time framework for short-term freeway travel time prediction. Journal of Transportation Engineering 2006, 132(12):921-932.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.12 , pp. 921-932
    • van Lint, J.C.1
  • 134
    • 78651473768 scopus 로고    scopus 로고
    • A robust and efficient method for fusing heterogeneous data from traffic sensors on freeways
    • Van Lint J.W.C., Hoogendoorn P.Serge A robust and efficient method for fusing heterogeneous data from traffic sensors on freeways. Computer-Aided Civil and Infrastructure Engineering 2010, 25(8):596-612.
    • (2010) Computer-Aided Civil and Infrastructure Engineering , vol.25 , Issue.8 , pp. 596-612
    • Van Lint, J.W.C.1    Hoogendoorn, P.S.2
  • 135
    • 84902538246 scopus 로고    scopus 로고
    • Short term traffic and travel time prediction models, in artificial intelligence applications to critical transportation issues
    • National Academies Press, Washington DC, Number E-C168, November, R. Chowdhury, S. Sadek (Eds.)
    • Van Lint J.W.C., Van Hinsbergen C.P.I.J. Short term traffic and travel time prediction models, in artificial intelligence applications to critical transportation issues. Transportation Research Circular 2012, National Academies Press, Washington DC, Number E-C168, November. R. Chowdhury, S. Sadek (Eds.).
    • (2012) Transportation Research Circular
    • Van Lint, J.W.C.1    Van Hinsbergen, C.P.I.J.2
  • 138
    • 84962926205 scopus 로고    scopus 로고
    • Prediction of non-recurrent short-term traffic patterns using genetically optimized probabilistic neural networks
    • Vlahogianni E.I. Prediction of non-recurrent short-term traffic patterns using genetically optimized probabilistic neural networks. Operational Research: An International Journal 2007, 7(2):1-14.
    • (2007) Operational Research: An International Journal , vol.7 , Issue.2 , pp. 1-14
    • Vlahogianni, E.I.1
  • 139
    • 49749118001 scopus 로고    scopus 로고
    • Short-term predictability of traffic flow regimes in signalised arterials
    • Vlahogianni E.I. Short-term predictability of traffic flow regimes in signalised arterials. Road and Transport Research 2008, 17(2):19-33.
    • (2008) Road and Transport Research , vol.17 , Issue.2 , pp. 19-33
    • Vlahogianni, E.I.1
  • 142
    • 84897055779 scopus 로고    scopus 로고
    • Testing and comparing neural network and statistical approaches for predicting transportation time series
    • forthcoming
    • Vlahogianni E.I., Karlaftis M.G. Testing and comparing neural network and statistical approaches for predicting transportation time series. Transportation research Record 2013, forthcoming.
    • (2013) Transportation research Record
    • Vlahogianni, E.I.1    Karlaftis, M.G.2
  • 143
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transportation Reviews 2004, 24(5):533-557.
    • (2004) Transportation Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 145
    • 33750338259 scopus 로고    scopus 로고
    • Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transportation Research Part C: Emerging Technologies 2006, 14(5):351-367.
    • (2006) Transportation Research Part C: Emerging Technologies , vol.14 , Issue.5 , pp. 351-367
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 149
    • 56449129029 scopus 로고    scopus 로고
    • Empirical and analytical investigation of traffic flow regimes and transitions in signalized arterials
    • Vlahogianni E.I., Geroliminis N., Skabardonis A. Empirical and analytical investigation of traffic flow regimes and transitions in signalized arterials. ASCE Journal of Transportation Engineering 2008, 134(12):512-522.
    • (2008) ASCE Journal of Transportation Engineering , vol.134 , Issue.12 , pp. 512-522
    • Vlahogianni, E.I.1    Geroliminis, N.2    Skabardonis, A.3
  • 151
    • 0031235938 scopus 로고    scopus 로고
    • Artificial Intelligence: Realizing the Ultimate Promises of Computing in Computing Research
    • Computing Research Association, Reprinted in AI Magazine
    • Waltz, D.L., 1997. Artificial Intelligence: Realizing the Ultimate Promises of Computing in Computing Research: A National Investment for Leadership in the 21st Century, Computing Research Association, Reprinted in AI Magazine, 18(3), 49-52.
    • (1997) A National Investment for Leadership in the 21st Century , vol.18 , Issue.3 , pp. 49-52
    • Waltz, D.L.1
  • 152
    • 11144262651 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extended Kalman filter: a general approach
    • Wang Y., Papageorgiou M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transportation Research Part B: Methodological 2005, 39(2):141-167.
    • (2005) Transportation Research Part B: Methodological , vol.39 , Issue.2 , pp. 141-167
    • Wang, Y.1    Papageorgiou, M.2
  • 153
    • 84873704499 scopus 로고    scopus 로고
    • Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet analysis-support vector machine theory
    • Wang J., Shi Q. Short-term traffic speed forecasting hybrid model based on Chaos-Wavelet analysis-support vector machine theory. Transportation Research Part C: Emerging Technologies 2012, 27:219-232.
    • (2012) Transportation Research Part C: Emerging Technologies , vol.27 , pp. 219-232
    • Wang, J.1    Shi, Q.2
  • 154
    • 56749170808 scopus 로고    scopus 로고
    • Chang Travel time prediction: empirical analysis of missing data issues for advanced traveler information system applications
    • Wang N., Zou G.-L. Chang Travel time prediction: empirical analysis of missing data issues for advanced traveler information system applications. Transportation Research Record: Journal of the Transportation Research Board 2008, 2049:81-91.
    • (2008) Transportation Research Record: Journal of the Transportation Research Board , vol.2049 , pp. 81-91
    • Wang, N.1    Zou, G.-L.2
  • 155
    • 33748429561 scopus 로고    scopus 로고
    • RENAISSANCE-A unified macroscopic model-based approach to real-time freeway network traffic surveillance
    • Wang Y., Papageorgiou M., Messmer A. RENAISSANCE-A unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C: Emerging Technologies 2006, 14(3):190-212.
    • (2006) Transportation Research Part C: Emerging Technologies , vol.14 , Issue.3 , pp. 190-212
    • Wang, Y.1    Papageorgiou, M.2    Messmer, A.3
  • 156
    • 33748429561 scopus 로고    scopus 로고
    • RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance
    • Wang Y., Papageorgiou M., Messmer A. RENAISSANCE - A unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C: Emerging Technologies 2006, 14(3):190-212.
    • (2006) Transportation Research Part C: Emerging Technologies , vol.14 , Issue.3 , pp. 190-212
    • Wang, Y.1    Papageorgiou, M.2    Messmer, A.3
  • 157
    • 79551610663 scopus 로고    scopus 로고
    • A new traffic speed forecasting method based on bi-pattern recognition
    • Wang J., Shang P., Zhao X. A new traffic speed forecasting method based on bi-pattern recognition. Fluctuation and Noise Letters 2011, 10(1):59-75.
    • (2011) Fluctuation and Noise Letters , vol.10 , Issue.1 , pp. 59-75
    • Wang, J.1    Shang, P.2    Zhao, X.3
  • 161
    • 84863286960 scopus 로고    scopus 로고
    • A clustering approach to online freeway traffic state identification using ITS data
    • Xia J., Huang W., Guo J. A clustering approach to online freeway traffic state identification using ITS data. KSCE Journal of Civil Engineering 2012, 16(3):426-432.
    • (2012) KSCE Journal of Civil Engineering , vol.16 , Issue.3 , pp. 426-432
    • Xia, J.1    Huang, W.2    Guo, J.3
  • 162
    • 33746860294 scopus 로고    scopus 로고
    • A wavelet network model for short-term traffic volume forecasting
    • Xie Y.C., Zhang Y.L. A wavelet network model for short-term traffic volume forecasting. Journal of Intelligent Transportation Systems 2006, 10(3):141-150.
    • (2006) Journal of Intelligent Transportation Systems , vol.10 , Issue.3 , pp. 141-150
    • Xie, Y.C.1    Zhang, Y.L.2
  • 163
    • 78651316181 scopus 로고    scopus 로고
    • Gaussian processes for short-term traffic volume forecasting
    • Xie Y.C., Zhao K.G. Gaussian processes for short-term traffic volume forecasting. Transportation Research Record 2010, 69-78.
    • (2010) Transportation Research Record , pp. 69-78
    • Xie, Y.C.1    Zhao, K.G.2
  • 164
    • 34249030515 scopus 로고    scopus 로고
    • Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition
    • Xie Y., Zhang Y., Ye Z. Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition. Computer-Aided Civil and Infrastructure Engineering 2007, 22(5):326-334.
    • (2007) Computer-Aided Civil and Infrastructure Engineering , vol.22 , Issue.5 , pp. 326-334
    • Xie, Y.1    Zhang, Y.2    Ye, Z.3
  • 165
    • 14744291722 scopus 로고    scopus 로고
    • Online recursive algorithm for short-term traffic prediction
    • Yang F., Yin Z., Liu H.X., Ran B. Online recursive algorithm for short-term traffic prediction. Transportation Research Record 2004, 1879:1-8.
    • (2004) Transportation Research Record , vol.1879 , pp. 1-8
    • Yang, F.1    Yin, Z.2    Liu, H.X.3    Ran, B.4
  • 167
    • 84870549790 scopus 로고    scopus 로고
    • Short-term traffic speed forecasting based on data recorded at irregular intervals
    • Ye Q., Szeto W.Y., Wong S.C. Short-term traffic speed forecasting based on data recorded at irregular intervals. IEEE Transactions on Intelligent Transportation Systems 2012, 13(4):1727-1737.
    • (2012) IEEE Transactions on Intelligent Transportation Systems , vol.13 , Issue.4 , pp. 1727-1737
    • Ye, Q.1    Szeto, W.Y.2    Wong, S.C.3
  • 169
    • 84882658843 scopus 로고    scopus 로고
    • A computational intelligence-based approach for short-term traffic flow prediction
    • Zargari S.A., Salar Z.S., Alavi A.H., Amir H.G. A computational intelligence-based approach for short-term traffic flow prediction. Expert Systems 2010, 29(2):124-142.
    • (2010) Expert Systems , vol.29 , Issue.2 , pp. 124-142
    • Zargari, S.A.1    Salar, Z.S.2    Alavi, A.H.3    Amir, H.G.4
  • 170
    • 40449104106 scopus 로고    scopus 로고
    • Forecasting of short-term freeway volume with v-support vector machines
    • Zhang Y., Xie Y. Forecasting of short-term freeway volume with v-support vector machines. Transportation Research Record 2007, 2024:92-99.
    • (2007) Transportation Research Record , vol.2024 , pp. 92-99
    • Zhang, Y.1    Xie, Y.2
  • 173
    • 80052710859 scopus 로고    scopus 로고
    • Seasonal autoregressive integrated moving average and support vector machine models: Prediction of short-term traffic flow on freeways
    • Zhang N., Zhang Y., Lu H. Seasonal autoregressive integrated moving average and support vector machine models: Prediction of short-term traffic flow on freeways. Transportation Research Record 2011, 2215:85-92.
    • (2011) Transportation Research Record , vol.2215 , pp. 85-92
    • Zhang, N.1    Zhang, Y.2    Lu, H.3
  • 175
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • Zheng W., Lee D.-H., Shi Q. Short-term freeway traffic flow prediction: Bayesian combined neural network approach. Journal of Transportation Engineering 2006, 132(2):114-121.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Lee, D.-H.2    Shi, Q.3
  • 176
    • 9444248204 scopus 로고    scopus 로고
    • Analyzing the Performance of Genetically Designed Short-Term Traffic Prediction Models Based on Road Types and Functional Classes
    • 3029, Lecture Notes in Computer Science, Orchard, Bob, Yang, Chunsheng, Ali, Moonis, Springer Berlin Heidelberg
    • Zhong, M., Sharma, S., Lingras, P., 2004. Analyzing the Performance of Genetically Designed Short-Term Traffic Prediction Models Based on Road Types and Functional Classes, Innovations in Applied Artificial Intelligence, 3029, Lecture Notes in Computer Science, Orchard, Bob, Yang, Chunsheng, Ali, Moonis, Springer Berlin Heidelberg, 1133-1145.
    • (2004) Innovations in Applied Artificial Intelligence , pp. 1133-1145
    • Zhong, M.1    Sharma, S.2    Lingras, P.3
  • 177
    • 21244465823 scopus 로고    scopus 로고
    • Refining genetically designed models for improved traffic prediction on rural roads
    • Zhong M., Sharma S., Lingras P. Refining genetically designed models for improved traffic prediction on rural roads. Transportation Planning and Technology 2005, 28(3):213-236.
    • (2005) Transportation Planning and Technology , vol.28 , Issue.3 , pp. 213-236
    • Zhong, M.1    Sharma, S.2    Lingras, P.3
  • 178
    • 76149118802 scopus 로고    scopus 로고
    • Field test of a travel-time prediction system with widely spaced detectors transportation research record
    • Zou N., Wang J., Chang G.-L., Paracha J. Field test of a travel-time prediction system with widely spaced detectors transportation research record. Journal of the Transportation Research Board 2009, 2129(1):62-72.
    • (2009) Journal of the Transportation Research Board , vol.2129 , Issue.1 , pp. 62-72
    • Zou, N.1    Wang, J.2    Chang, G.-L.3    Paracha, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.