메뉴 건너뛰기




Volumn 19, Issue 6, 2011, Pages 1006-1018

Incorporating uncertainty into short-term travel time predictions

Author keywords

Prediction; Short term; Travel time; Variability

Indexed keywords

AUTOMOBILE DRIVERS; FORECASTING; TIME VARYING CONTROL SYSTEMS;

EID: 79960456666     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2011.05.014     Document Type: Article
Times cited : (67)

References (44)
  • 4
    • 85029008640 scopus 로고    scopus 로고
    • Travel time reliability as a measure of service
    • Transportation Research Board 81st Annual Meeting, Washington, DC, USA.
    • Chen, C. Skabardonis, A., Varaiya, P., 2002. Travel time reliability as a measure of service. In: Transportation Research Board 81st Annual Meeting, Washington, DC, USA.
    • (2002)
    • Chen, C.1    Skabardonis, A.2    Varaiya, P.3
  • 5
    • 84921435107 scopus 로고    scopus 로고
    • Guaranteed bounds on highway travel times using probe and fixed data
    • Transportation Research Board 88th Annual Meeting, Washington, DC, USA.
    • Claudel, C.G., Hofeitner, A., Mignerey, N., Bayen, A.M., 2009. Guaranteed bounds on highway travel times using probe and fixed data. In: Transportation Research Board 88th Annual Meeting, Washington, DC, USA.
    • (2009)
    • Claudel, C.G.1    Hofeitner, A.2    Mignerey, N.3    Bayen, A.M.4
  • 7
    • 0031092866 scopus 로고    scopus 로고
    • Short-term inter-urban traffic forecasts using neural networks
    • Dougherty M., Cobbet M. Short-term inter-urban traffic forecasts using neural networks. International Journal of Forecasting 1997, 13(1):21-31.
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 21-31
    • Dougherty, M.1    Cobbet, M.2
  • 8
    • 0032157717 scopus 로고    scopus 로고
    • Expected shortest paths in dynamic and stochastic traffic networks
    • Fu L., Rilett L.R. Expected shortest paths in dynamic and stochastic traffic networks. Transportation Research Part B 1998, 32(7):499-516.
    • (1998) Transportation Research Part B , vol.32 , Issue.7 , pp. 499-516
    • Fu, L.1    Rilett, L.R.2
  • 9
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquardt algorithm
    • Hagan M.T., Menhaj M. Training feedforward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 1994, 5(6):989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.2
  • 10
    • 25144524732 scopus 로고    scopus 로고
    • Short-term prediction of travel time using neural networks on an interurban highway
    • Innamaa S. Short-term prediction of travel time using neural networks on an interurban highway. Transportation 2005, 32(6):649-669.
    • (2005) Transportation , vol.32 , Issue.6 , pp. 649-669
    • Innamaa, S.1
  • 13
    • 67349277727 scopus 로고    scopus 로고
    • Memory properties and fractional integration in transportation time-series
    • Karlaftis M.G., Vlahogianni E.I. Memory properties and fractional integration in transportation time-series. Transportation Research Part C 2009, 17:444-453.
    • (2009) Transportation Research Part C , vol.17 , pp. 444-453
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 14
    • 85029835101 scopus 로고    scopus 로고
    • Precision of predicted travel time, the responses of travellers, and satisfaction in the travel experience. In: Proceedings of 16th International Symposium on Transportation and Traffic Theory, Maryland.
    • Kikuchi, S., Mangalpally, S., Gupta, A., 2005. Precision of predicted travel time, the responses of travellers, and satisfaction in the travel experience. In: Proceedings of 16th International Symposium on Transportation and Traffic Theory, Maryland.
    • (2005)
    • Kikuchi, S.1    Mangalpally, S.2    Gupta, A.3
  • 15
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural networks or statistical models for short-term motor way traffic forecasting
    • Kirby H.R., Watson S.M., Dougherty M.S. Should we use neural networks or statistical models for short-term motor way traffic forecasting. International Journal of Forecasting 1997, 13(1):43-50.
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 43-50
    • Kirby, H.R.1    Watson, S.M.2    Dougherty, M.S.3
  • 16
    • 0034432244 scopus 로고    scopus 로고
    • Day-to-Day travel time trends and travel-time prediction from loop-detector data
    • Kwon J., Coifman B., Bickel P. Day-to-Day travel time trends and travel-time prediction from loop-detector data. Transportation Research Record 2000, 1717:120-129.
    • (2000) Transportation Research Record , vol.1717 , pp. 120-129
    • Kwon, J.1    Coifman, B.2    Bickel, P.3
  • 17
    • 0035055213 scopus 로고    scopus 로고
    • The value of time and reliability: measurement from a value pricing experiment
    • Lam T.C., Small K.A. The value of time and reliability: measurement from a value pricing experiment. Transportation Research Part E 2001, 37(2-3):231-251.
    • (2001) Transportation Research Part E , vol.37 , Issue.2-3 , pp. 231-251
    • Lam, T.C.1    Small, K.A.2
  • 19
    • 84949217184 scopus 로고    scopus 로고
    • Nonlinear combination of travel-time prediction model based on wavelet network
    • Proceedings of IEEE 5th International Conference on Intelligent Transportation Systems, Singapore.
    • Li, S., 2002. Nonlinear combination of travel-time prediction model based on wavelet network. In: Proceedings of IEEE 5th International Conference on Intelligent Transportation Systems, Singapore.
    • (2002)
    • Li, S.1
  • 20
    • 79951958128 scopus 로고    scopus 로고
    • Enhancing Motorway Travel Time Prediction Models through Explicit Incorporation of Travel Time Variability
    • PhD Thesis. Department of Civil Engineering, Monash University.
    • Li, R., 2006. Enhancing Motorway Travel Time Prediction Models through Explicit Incorporation of Travel Time Variability. PhD Thesis. Department of Civil Engineering, Monash University, 264p.
    • (2006) , pp. 264
    • Li, R.1
  • 21
    • 33745246334 scopus 로고    scopus 로고
    • Evaluation of speed-based travel time estimation models
    • Li R., Rose G., Sarvi M. Evaluation of speed-based travel time estimation models. Journal of Transportation Engineering 2006, 132(7):540-547.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.7 , pp. 540-547
    • Li, R.1    Rose, G.2    Sarvi, M.3
  • 22
    • 33845290598 scopus 로고    scopus 로고
    • Using automatic vehicle identification data to gain insight into travel time variability and its causes
    • Li R., Rose G., Sarvi M. Using automatic vehicle identification data to gain insight into travel time variability and its causes. Transportation Research Record 2006, 1945:24-32.
    • (2006) Transportation Research Record , vol.1945 , pp. 24-32
    • Li, R.1    Rose, G.2    Sarvi, M.3
  • 25
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel times using modular neural networks
    • Park D., Rilett L.R. Forecasting multiple-period freeway link travel times using modular neural networks. Transportation Research Record 1998, 1617:163-170.
    • (1998) Transportation Research Record , vol.1617 , pp. 163-170
    • Park, D.1    Rilett, L.R.2
  • 26
    • 0032623401 scopus 로고    scopus 로고
    • Forecasting freeway link travel times with a multilayer feed-forward neural network
    • Park D., Rilett L.R. Forecasting freeway link travel times with a multilayer feed-forward neural network. Computer-Aided Civil and Infrastructure Engineering 1999, 14(5):357-367.
    • (1999) Computer-Aided Civil and Infrastructure Engineering , vol.14 , Issue.5 , pp. 357-367
    • Park, D.1    Rilett, L.R.2
  • 27
    • 0032779078 scopus 로고    scopus 로고
    • Spectral basis neural networks for real-time travel time forecasting
    • Park D., Rilett L.R., Han G. Spectral basis neural networks for real-time travel time forecasting. Journal of Transportation Engineering 1999, 125(6):515-523.
    • (1999) Journal of Transportation Engineering , vol.125 , Issue.6 , pp. 515-523
    • Park, D.1    Rilett, L.R.2    Han, G.3
  • 28
    • 44349103030 scopus 로고    scopus 로고
    • A recursive, cell processing model for predicting freeway travel times
    • Paterson D., Rose G. A recursive, cell processing model for predicting freeway travel times. Transportation Research Part C 2008, 16(4):432-453.
    • (2008) Transportation Research Part C , vol.16 , Issue.4 , pp. 432-453
    • Paterson, D.1    Rose, G.2
  • 29
    • 0141613930 scopus 로고    scopus 로고
    • Dynamic and stochastic shortest path in transportation networks with two components of travel time uncertainty
    • Pattanamekar P., Park D., Rilett L.R., Lee J., Lee C. Dynamic and stochastic shortest path in transportation networks with two components of travel time uncertainty. Transportation Research Part C 2003, 11(5):331-354.
    • (2003) Transportation Research Part C , vol.11 , Issue.5 , pp. 331-354
    • Pattanamekar, P.1    Park, D.2    Rilett, L.R.3    Lee, J.4    Lee, C.5
  • 31
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: comparison of modelling approach
    • Smith B., Demetsky M. Traffic flow forecasting: comparison of modelling approach. Journal of Transportation Engineering 1997, 123(4):261-266.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.1    Demetsky, M.2
  • 33
    • 0038630725 scopus 로고    scopus 로고
    • Comparison of four modelling techniques for short-term AADT forecasting in HongKong
    • Tang Y.F., Lam W.K., Ng P.P. Comparison of four modelling techniques for short-term AADT forecasting in HongKong. Journal of Transportation Engineering 2003, 139(3):271-277.
    • (2003) Journal of Transportation Engineering , vol.139 , Issue.3 , pp. 271-277
    • Tang, Y.F.1    Lam, W.K.2    Ng, P.P.3
  • 36
    • 33645020307 scopus 로고    scopus 로고
    • Monitoring and predicting freeway travel time reliability: using width and skew of the day-to-day-travel time distribution
    • Washington, DC, USA.
    • van Lint, J.W.C., 2005. Monitoring and predicting freeway travel time reliability: using width and skew of the day-to-day-travel time distribution. In: Transportation Research Board 84th Annual Meeting, Washington, DC, USA.
    • (2005) Transportation Research Board 84th Annual Meeting.
    • van Lint, J.W.C.1
  • 38
    • 0036974476 scopus 로고    scopus 로고
    • Freeway travel time prediction with state-space neural networks modelling state-space dynamics with recurrent neural networks
    • van Lint J., Hoogendoorn S., Van Zuvlen H. Freeway travel time prediction with state-space neural networks modelling state-space dynamics with recurrent neural networks. Transportation Research Record 2002, 1811:30-39.
    • (2002) Transportation Research Record , vol.1811 , pp. 30-39
    • van Lint, J.1    Hoogendoorn, S.2    Van Zuvlen, H.3
  • 39
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • Van Lint J.W.C., Hoogendoorn S.P., Van Zuylen H.J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transportation Research Part C 2005, 13:347-369.
    • (2005) Transportation Research Part C , vol.13 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 40
    • 23844513726 scopus 로고    scopus 로고
    • Optimised and mets-optimised neural networks for short-term traffic prediction: a genetic approach
    • Vlahagianni E.I., Karlafitis M.G., Golian J.C. Optimised and mets-optimised neural networks for short-term traffic prediction: a genetic approach. Transportation Research Part C 2005, 13:211-234.
    • (2005) Transportation Research Part C , vol.13 , pp. 211-234
    • Vlahagianni, E.I.1    Karlafitis, M.G.2    Golian, J.C.3
  • 41
    • 33748429561 scopus 로고    scopus 로고
    • RENAISSANCE - a unified macroscopic model-based approach to real-time freeway network traffic surveillance
    • Wang Y., Papageorgiou M., Messmer A. RENAISSANCE - a unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C: Emerging Technologies 2006, 14(3):190-212.
    • (2006) Transportation Research Part C: Emerging Technologies , vol.14 , Issue.3 , pp. 190-212
    • Wang, Y.1    Papageorgiou, M.2    Messmer, A.3
  • 42
    • 80052728283 scopus 로고    scopus 로고
    • Dynamic freeway corridor travel time prediction using single inductive loop detectors
    • Washington, DC, USA.
    • Xia, J., Chen, M., 2009. Dynamic freeway corridor travel time prediction using single inductive loop detectors. In: Transportation Research Board 88th Annual Meeting, Washington, DC, USA.
    • (2009) Transportation Research Board 88th Annual Meeting.
    • Xia, J.1    Chen, M.2
  • 43
  • 44
    • 80052726850 scopus 로고    scopus 로고
    • ATIS application: Field test of a travel time prediction system with widely spaced detectors - algorithms and results
    • Washington, DC, USA.
    • Zou, N., Paracha, J., 2009. ATIS application: Field test of a travel time prediction system with widely spaced detectors - algorithms and results. In: Transportation Research Board 88th Annual Meeting, Washington, DC, USA.
    • (2009) Transportation Research Board 88th Annual Meeting.
    • Zou, N.1    Paracha, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.