메뉴 건너뛰기




Volumn 22, Issue 5, 2007, Pages 326-334

Short-term traffic volume forecasting using Kalman filter with discrete wavelet decomposition

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATION THEORY; COMPUTER SIMULATION; DATA COMMUNICATION SYSTEMS; KALMAN FILTERS; MATHEMATICAL MODELS; WAVELET TRANSFORMS;

EID: 34249030515     PISSN: 10939687     EISSN: 14678667     Source Type: Journal    
DOI: 10.1111/j.1467-8667.2007.00489.x     Document Type: Article
Times cited : (293)

References (36)
  • 1
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data by using Box-Jenkins techniques
    • in TRB, National Research Council, Washington, DC
    • Ahmed, M. S. & Cook, A. R. (1979), Analysis of freeway traffic time-series data by using Box-Jenkins techniques, in Transportation Research Record: Journal of the Transportation Research Board, No. 7 22, TRB, National Research Council, Washington, DC, pp. 1-9.
    • (1979) Transportation Research Record: Journal of the Transportation Research Board , Issue.7-22 , pp. 1-9
    • Ahmed, M.S.1    Cook, A.R.2
  • 4
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen, H. B. & Grant-Muller, S. (2001), Use of sequential learning for short-term traffic flow forecasting, Transportation Research Part C, 9 (5), 319-36.
    • (2001) Transportation Research Part C , vol.9 , Issue.5 , pp. 319-336
    • Chen, H.B.1    Grant-Muller, S.2
  • 7
    • 0026128928 scopus 로고
    • Nonparametric regression and short-term freeway traffic forecasting
    • Davis, G. A. & Nihan, N. L. (1991), Nonparametric regression and short-term freeway traffic forecasting, Journal of Transportation Engineering, 117 (2), 178-88.
    • (1991) Journal of Transportation Engineering , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 8
    • 0027681974 scopus 로고
    • ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition
    • Digalakis, V., Rohlicek, J. R. & Ostendorf, M. (1993), ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition, IEEE Transaction on Speech and Audio Proceeding, 1 (4), 431-42.
    • (1993) IEEE Transaction on Speech and Audio Proceeding , vol.1 , Issue.4 , pp. 431-442
    • Digalakis, V.1    Rohlicek, J.R.2    Ostendorf, M.3
  • 11
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • Jiang, X. & Adeli, H. (2005), Dynamic wavelet neural network model for traffic flow forecasting, Journal of Transportation Engineering, 131 (10), 771-79.
    • (2005) Journal of Transportation Engineering , vol.131 , Issue.10 , pp. 771-779
    • Jiang, X.1    Adeli, H.2
  • 12
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural network or statistical models for short-term motorway traffic forecasting?
    • Kirby, H. R., Watson, S. M. & Dougherty, M. S. (1997), Should we use neural network or statistical models for short-term motorway traffic forecasting? International Journal of Forecasting, 13 (1), 43-50.
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 43-50
    • Kirby, H.R.1    Watson, S.M.2    Dougherty, M.S.3
  • 13
    • 0034773818 scopus 로고    scopus 로고
    • A recursive traffic flow predictor based on dynamic generalized linear model framework
    • in Oakland, California, August 25-29
    • Lan, C. J. (2001), A recursive traffic flow predictor based on dynamic generalized linear model framework, in IEEE Intelligent Transportation Systems Conference Proceedings, Oakland, California, August 25-29, pp. 410-15.
    • (2001) IEEE Intelligent Transportation Systems Conference Proceedings , pp. 410-415
    • Lan, C.J.1
  • 14
    • 15844429769 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction using a combined neural network model
    • Paper No. 04-3269, in Washington DC, January 11-15 on CD-ROM
    • Lee, D. H., Zheng, W. Z. & Shi, Q. X. (2004), Short-term freeway traffic flow prediction using a combined neural network model, Paper No. 04-3269, in Proceedings of the 83rd Annual Meeting of the Transportation Research Board, Washington DC, January 11-15 on CD-ROM.
    • (2004) Proceedings of the 83rd Annual Meeting of the Transportation Research Board
    • Lee, D.H.1    Zheng, W.Z.2    Shi, Q.X.3
  • 15
    • 0034779489 scopus 로고    scopus 로고
    • A Gaussian maximum likelihood formulation for short-term forecasting of traffic flow
    • in Oakland, California, August 25-29
    • Lin, W. H. (2001), A Gaussian maximum likelihood formulation for short-term forecasting of traffic flow, in IEEE Intelligent Transportation Systems Conference Proceedings, Oakland, California, August 25-29, 150-55.
    • (2001) IEEE Intelligent Transportation Systems Conference Proceedings , pp. 150-155
    • Lin, W.H.1
  • 17
    • 0016349498 scopus 로고
    • The prediction of traffic flow volumes based on spectral analysis
    • Nicholson, H. & Swann, C. D. (1974), The prediction of traffic flow volumes based on spectral analysis, Transportation Research, 8, 533-38.
    • (1974) Transportation Research , vol.8 , pp. 533-538
    • Nicholson, H.1    Swann, C.D.2
  • 18
    • 0019025588 scopus 로고
    • Use of the Box and Jenkins time series technique in traffic forecasting
    • Nihan, N. L. & Holmesland, K. O. (1980), Use of the Box and Jenkins time series technique in traffic forecasting, Transportation, 9 (2), 125-43.
    • (1980) Transportation , vol.9 , Issue.2 , pp. 125-143
    • Nihan, N.L.1    Holmesland, K.O.2
  • 19
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • Okutani, I. & Stephanedes, Y. J. (1984), Dynamic prediction of traffic volume through Kalman filtering theory, Transportation Research Part B, 18 (1), 1-11.
    • (1984) Transportation Research Part B , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 20
    • 0036960199 scopus 로고    scopus 로고
    • Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting
    • in TRB, National Research Council, Washington, DC
    • Park, B. (2002), Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting, in Transportation Research Record: Journal of the Transportation Research Board, No. 1802, TRB, National Research Council, Washington, DC, pp. 190-96.
    • (2002) Transportation Research Record: Journal of the Transportation Research Board, No. 1802 , pp. 190-196
    • Park, B.1
  • 22
    • 0033737589 scopus 로고    scopus 로고
    • Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis
    • 2000
    • Samant, A. & Adeli, H. (2000), Feature extraction for traffic incident detection using wavelet transform and linear discriminant analysis, Computer-Aided Civil and Infrastructure Engineering, 13 (4), 2000, 241-50.
    • (2000) Computer-Aided Civil and Infrastructure Engineering , vol.13 , Issue.4 , pp. 241-250
    • Samant, A.1    Adeli, H.2
  • 24
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • Smith, B. L. & Demetsky, M. J. (1997), Traffic flow forecasting: comparison of modeling approaches, Journal of Transportation Engineering, 123 (4), 261-66.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 25
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and nonparametric models for traffic flow forecasting
    • Smith, B. L., Williams, B. M. & Oswald, R. K. (2002), Comparison of parametric and nonparametric models for traffic flow forecasting, Transportation Research Part C, 10 (4), 303-21.
    • (2002) Transportation Research Part C , vol.10 , Issue.4 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Oswald, R.K.3
  • 26
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state space approach for urban traffic flow modeling and prediction
    • Stathopoulos, A. & Karlaftis, M. G. (2003), A multivariate state space approach for urban traffic flow modeling and prediction, Transportation Research Part C, 11 (2), 121-35.
    • (2003) Transportation Research Part C , vol.11 , Issue.2 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 29
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time series models to forecast traffic flow
    • Van Der Voort, M., Dougherty, M. & Watson, S. (1996), Combining Kohonen maps with ARIMA time series models to forecast traffic flow, Transportation Research Part C, 4 (5), 307-18.
    • (1996) Transportation Research Part C , vol.4 , Issue.5 , pp. 307-318
    • Van Der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 30
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: Overview of objectives and methods
    • Vlahogianni, E. I., Golias, J. C. & Karlaftis, M. G. (2004), Short-term traffic forecasting: Overview of objectives and methods, Transportation Reviews, 24 (5), 533-57.
    • (2004) Transportation Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 32
    • 0031092002 scopus 로고    scopus 로고
    • Short-term forecasting based on a transformation and classification of traffic volume time series
    • Wild, D. (1997), Short-term forecasting based on a transformation and classification of traffic volume time series, International Journal of Forecasting, 13 (1), 63-72.
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 63-72
    • Wild, D.1
  • 33
    • 0032207514 scopus 로고    scopus 로고
    • Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models
    • in TRB, National Research Council, Washington, DC
    • Williams, B. M., Durvasula, P. K. & Brown, D. E. (1998), Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models, in Transportation Research Record: Journal of the Transportation Research Board, No. 1644, TRB, National Research Council, Washington, DC, pp. 132-41.
    • (1998) Transportation Research Record: Journal of the Transportation Research Board, No. 1644 , pp. 132-141
    • Williams, B.M.1    Durvasula, P.K.2    Brown, D.E.3
  • 34
    • 34249022679 scopus 로고    scopus 로고
    • The fuzzy-neural network traffic prediction framework with wavelet decomposition
    • in Washington DC, January 12-16, on CD-ROM
    • Xiao, H., Sun, H. Y. & Ran, B. (2003), The fuzzy-neural network traffic prediction framework with wavelet decomposition, Paper No. 03-1899, in Proceedings of the 82 nd Annual Meeting of the Transportation Research Board, Washington DC, January 12-16, on CD-ROM.
    • (2003) Proceedings of the 82 Nd Annual Meeting of the Transportation Research Board
    • Xiao, H.1    Sun, H.Y.2    Ran, B.3
  • 35
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using a fuzzy-neural approach
    • Yin, H. B., Wong, S. C., Xu, J. M. & Wong, C. K. (2002), Urban traffic flow prediction using a fuzzy-neural approach, Transportation Research Part C, 10 (2), 85-98.
    • (2002) Transportation Research Part C , vol.10 , Issue.2 , pp. 85-98
    • Yin, H.B.1    Wong, S.C.2    Xu, J.M.3    Wong, C.K.4
  • 36
    • 0033896533 scopus 로고    scopus 로고
    • A hybrid wavelet-Kalman filter method for load forecasting
    • Zheng, T. X., Girgis, A. A. & Makram, E. B. (2000), A hybrid wavelet-Kalman filter method for load forecasting, Electric Power Systems Research, 54 (1), 11-17.
    • (2000) Electric Power Systems Research , vol.54 , Issue.1 , pp. 11-17
    • Zheng, T.X.1    Girgis, A.A.2    Makram, E.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.