메뉴 건너뛰기




Volumn 40, Issue 9, 2006, Pages 745-766

Estimating dynamic roadway travel times using automatic vehicle identification data for low sampling rates

Author keywords

Advanced traveler information systems; Automatic vehicle identification systems; Intelligent transportation systems; Roadway travel time estimation; Traffic surveillance systems

Indexed keywords

ADAPTIVE ALGORITHMS; ADAPTIVE FILTERING; HIGHWAY TRAFFIC CONTROL; IDENTIFICATION (CONTROL SYSTEMS); INTELLIGENT VEHICLE HIGHWAY SYSTEMS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 33745153428     PISSN: 01912615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trb.2005.10.002     Document Type: Article
Times cited : (119)

References (17)
  • 1
    • 85029835782 scopus 로고    scopus 로고
    • Abdulhai, B., Porwal, H., Recker, W., 1999. Short-term freeway traffic flow prediction using genetically optimized time-delay-based neural networks. Transportation Research Board 78th Annual Meeting, Washington, DC.
  • 2
    • 0018729076 scopus 로고    scopus 로고
    • Ahmed, M., Cook, A., 1982. Analysis of freeway traffic time series data by using box-Jenkins techniques. Transportation Research Record 722, TRB, National Research Council, Washington, DC, pp. 1-9.
  • 3
    • 84954494088 scopus 로고    scopus 로고
    • Ben Akiva, M., Kroes, E., De Ruiter, J., Smulders, S., Whittaker, J., Lindveld, K., 1992. Real-time Prediction of Traffic Congestion. Vehicle Navigation and Information Systems: Conference Record of Papers, New York, NY, Institute of Electrical and Electronics Engineers, pp. 557-562.
  • 4
    • 0032208086 scopus 로고    scopus 로고
    • Coifman, B., 1998. Vehicle reidentification and travel time measurement in real-time on freeways using the existing loop detector infrastructure, Transportation Research Record, No. 1643, Transportation Research Board, pp. 181-191.
  • 5
    • 0036893947 scopus 로고    scopus 로고
    • Vehicle reidentification and travel time measurement on congested freeways
    • Coifman B., and Cassidy M. Vehicle reidentification and travel time measurement on congested freeways. Transportation Research: Part A 36 10 (2002) 899-917
    • (2002) Transportation Research: Part A , vol.36 , Issue.10 , pp. 899-917
    • Coifman, B.1    Cassidy, M.2
  • 6
    • 0141566255 scopus 로고    scopus 로고
    • Improved vehicle reidentification and travel time measurement on congested freeways
    • Coifman B., and Ergueta E. Improved vehicle reidentification and travel time measurement on congested freeways. ASCE Journal of Transportation Engineering 129 5 (2003) 475-483
    • (2003) ASCE Journal of Transportation Engineering , vol.129 , Issue.5 , pp. 475-483
    • Coifman, B.1    Ergueta, E.2
  • 7
    • 85029827020 scopus 로고    scopus 로고
    • ETTM on the Web, 2001. United States ETC systems in production/development. . Updated August 1, 2001. (Accessed 28:8:2001).
  • 8
    • 85029826123 scopus 로고    scopus 로고
    • Houston TranStar, 2001. TranStar description. . (Accessed 14:6:2001).
  • 9
    • 85029855967 scopus 로고    scopus 로고
    • Ishak, S., Al-Deek, H., 2003. Performance evaluation of a short-term freeway traffic prediction model. Transportation Research Board 82nd Annual Meeting, Washington, DC.
  • 10
    • 0033226152 scopus 로고    scopus 로고
    • Application of the subset ARIMA model for short-term freeway traffic volume forecasting
    • Lee S., and Fambro D. Application of the subset ARIMA model for short-term freeway traffic volume forecasting. Transportation Research Record 1678 (1999) 179-188
    • (1999) Transportation Research Record , vol.1678 , pp. 179-188
    • Lee, S.1    Fambro, D.2
  • 11
    • 85029872521 scopus 로고    scopus 로고
    • Mouskos, K.C., Niver, E., Pignataro, L.J., Lee, S., 1998. Transmit system evaluation. Final Report, Institute for Transportation, New Jersey Institute of Technology, Newark, NJ.
  • 12
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel times using modular neural networks
    • Park D., and Rilett L. Forecasting multiple-period freeway link travel times using modular neural networks. Transportation Research Record 1617 (1998) 163-170
    • (1998) Transportation Research Record , vol.1617 , pp. 163-170
    • Park, D.1    Rilett, L.2
  • 13
    • 0032779078 scopus 로고    scopus 로고
    • Spectral basis neural networks for real-time travel time forecasting
    • Park D., Rilett L.R., and Han G. Spectral basis neural networks for real-time travel time forecasting. Journal of Transportation Engineering 125 6 (1999) 515-523
    • (1999) Journal of Transportation Engineering , vol.125 , Issue.6 , pp. 515-523
    • Park, D.1    Rilett, L.R.2    Han, G.3
  • 14
    • 85029862701 scopus 로고    scopus 로고
    • SAIC, 2000. Automated vehicle identification tags in san antonio: lessons learned from the metropolitan model deployment initiative. Science Applications International Corporation, McLean, VA.
  • 15
    • 85029858800 scopus 로고    scopus 로고
    • SwRI, 1998. Automatic vehicle identification model deployment initiative-system design document. Report prepared for TransGuide, Texas Department of Transportation, Southwest Research Institute, San Antonio, TX.
  • 16
    • 85029836093 scopus 로고    scopus 로고
    • Turner, S.M., Eisele, W.L., Benz, R.J., Holdener, D.J., 1998. Travel time data collection handbook. Report FHWA-PL-98-035, Federal Highway Administration, Office of Highway Information Management, Washington, DC.
  • 17
    • 85029877012 scopus 로고    scopus 로고
    • Vickich, M., 2001. Personal e-mail communications, June-August 2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.