메뉴 건너뛰기




Volumn , Issue 2175, 2010, Pages 28-37

Real-time short-term traffic speed level forecasting and uncertainty quantification using layered Kalman filters

Author keywords

[No Author keywords available]

Indexed keywords

BANDPASS FILTERS; CONTROL SYSTEMS; COSTS; ECONOMIC ANALYSIS; KALMAN FILTERS; SPEED; SPEED CONTROL; STATISTICAL METHODS; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; TRAFFIC CONGESTION; UNCERTAINTY ANALYSIS;

EID: 78651271213     PISSN: 03611981     EISSN: None     Source Type: Journal    
DOI: 10.3141/2175-04     Document Type: Article
Times cited : (97)

References (37)
  • 2
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: Overview of objectives and methods
    • Vlahogianni, E. I., J. C. Golias, and M. G. Karlaftis. Short-Term Traffic Forecasting: Overview of Objectives and Methods. Transport Reviews, Vol. 24, 2004, pp. 533-557.
    • (2004) Transport Reviews , vol.24 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 6
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal arima: Theoretical basis and empirical results
    • Williams, B. M., and L. A. Hoel. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA: Theoretical Basis and Empirical Results. Journal of Transportation Engineering, Vol. 129, No. 6, 2003, pp. 664-672.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.6 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 7
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data by using box-jenkins techniques
    • TRB, National Research Council, Washington, D.C.
    • Ahmed, M. S., and A. R. Cook. Analysis of Freeway Traffic Time-Series Data by Using Box-Jenkins Techniques. In Transportation Research Record 722, TRB, National Research Council, Washington, D.C., 1979, pp. 1-9.
    • (1979) Transportation Research Record 722 , pp. 1-9
    • Ahmed, M.S.1    Cook, A.R.2
  • 9
    • 0001805729 scopus 로고
    • Exponential filtering of traffic data
    • TRB, National Research Council, Washington, D.C.
    • Ross, P. Exponential Filtering of Traffic Data. In Transportation Research Record 869, TRB, National Research Council, Washington, D.C., 1982, pp. 43-49.
    • (1982) Transportation Research Record 869 , pp. 43-49
    • Ross, P.1
  • 10
    • 0016349498 scopus 로고
    • The prediction of traffic flow volumes based on spectral analysis
    • Nicholson, H., and C. D. Swann. The Prediction of Traffic Flow Volumes Based on Spectral Analysis. Transportation Research, Vol. 8, 1974, pp. 533-538.
    • (1974) Transportation Research , vol.8 , pp. 533-538
    • Nicholson, H.1    Swann, C.D.2
  • 11
    • 0035563672 scopus 로고    scopus 로고
    • Multivariate vehicular traffic flow prediction: Evaluation of arimax modeling
    • TRB, National Research Council, Washington, D.C.
    • Williams, B. M. Multivariate Vehicular Traffic Flow Prediction: Evaluation of ARIMAX Modeling. In Transportation Research Record: Journal of the Transportation Research Board, No. 1776, TRB, National Research Council, Washington, D.C., 2001, pp. 194-200.
    • (2001) Transportation Research Record: Journal of the Transportation Research Board , Issue.1776 , pp. 194-200
    • Williams, B.M.1
  • 12
    • 2142812984 scopus 로고    scopus 로고
    • Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches
    • Transportation Research Board of the National Academies, Washington, D.C.
    • Kamarianakis, Y., and P. Prastacos. Forecasting Traffic Flow Conditions in an Urban Network: Comparison of Multivariate and Univariate Approaches. In Transportation Research Record: Journal of the Transportation Research Board, No. 1857, Transportation Research Board of the National Academies, Washington, D.C., 2003, pp. 74-84.
    • (2003) Transportation Research Record: Journal of the Transportation Research Board , Issue.1857 , pp. 74-84
    • Kamarianakis, Y.1    Prastacos, P.2
  • 13
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through kalman filtering theory
    • Okutani, I., and Y. J. Stephanedes. Dynamic Prediction of Traffic Volume Through Kalman Filtering Theory. Transportation Research Part B, Vol. 18, No. 1, 1984, pp. 1-11.
    • (1984) Transportation Research Part B , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 14
    • 14744291722 scopus 로고    scopus 로고
    • Online recursive algorithm for short-term traffic prediction
    • Transportation Research Board of the National Academies, Washington, D.C.
    • Yang, F., Z. Yin, H. X. Liu, and B. Ran. Online Recursive Algorithm for Short-Term Traffic Prediction. In Transportation Research Record: Journal of the Transportation Research Board, No. 1879, Transportation Research Board of the National Academies, Washington, D.C., 2001, pp. 1-8.
    • (2001) Transportation Research Record: Journal of the Transportation Research Board , Issue.1879 , pp. 1-8
    • Yang, F.1    Yin, Z.2    Liu, H.X.3    Ran, B.4
  • 16
    • 40449101916 scopus 로고    scopus 로고
    • Adaptive seasonal time series models for forecasting short-term traffic flow
    • Transportation Research Board of the National Academies, Washington, D.C.
    • Shekhar, S., and B. M. Williams. Adaptive Seasonal Time Series Models for Forecasting Short-Term Traffic Flow. In Transportation Research Record: Journal of the Transportation Research Board, No. 2024, Transportation Research Board of the National Academies, Washington, D.C., 2007, pp. 116-125.
    • (2007) Transportation Research Record: Journal of the Transportation Research Board , Issue.2024 , pp. 116-125
    • Shekhar, S.1    Williams, B.M.2
  • 17
    • 40449106442 scopus 로고    scopus 로고
    • Data collection time intervals for stochastic short-term traffic flow forecasting
    • Transportation Research Board of the National Academies, Washington, D.C.
    • Guo, J., B. M. Williams, and B. L. Smith. Data Collection Time Intervals for Stochastic Short-Term Traffic Flow Forecasting. In Transportation Research Record: Journal of the Transportation Research Board, No. 2024, Transportation Research Board of the National Academies, Washington, D.C., 2007, pp. 18-26.
    • (2007) Transportation Research Record: Journal of the Transportation Research Board , Issue.2024 , pp. 18-26
    • Guo, J.1    Williams, B.M.2    Smith, B.L.3
  • 18
    • 0001891123 scopus 로고
    • Short-term traffic flow prediction: Neural network approach
    • TRB, National Research Council, Washington, D.C.
    • Smith, B. L., and M. J. Demetsky. Short-Term Traffic Flow Prediction: Neural Network Approach. In Transportation Research Record 1453, TRB, National Research Council, Washington, D.C., 1994, pp. 98-104.
    • (1994) Transportation Research Record , vol.1453 , pp. 98-104
    • Smith, B.L.1    Demetsky, M.J.2
  • 19
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen, H., and S. Grant-Muller. Use of Sequential Learning for Short-Term Traffic Flow Forecasting. Transportation Research Part C, Vol. 9, No. 5, 2001, pp. 319-336.
    • (2001) Transportation Research Part C , vol.9 , Issue.5 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 20
    • 0345424627 scopus 로고    scopus 로고
    • Artificial neural network and statistical modeling of traffic flows - The best of both worlds
    • Presented at, July 12-17, Antwerp, Belgium
    • Clark, S. D., H. Chen, and S. Grant-Muller. Artificial Neural Network and Statistical Modeling of Traffic Flows-The Best of Both Worlds. Presented at 8th World Congress on Transport Research, July 12-17, 1998, Antwerp, Belgium.
    • (1998) 8th World Congress on Transport Research
    • Clark, S.D.1    Chen, H.2    Grant-Muller, S.3
  • 21
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • Dia, H. An Object-Oriented Neural Network Approach to Short-Term Traffic Forecasting. European Journal of Operation Research, Vol. 131, 2001, pp. 253-261.
    • (2001) European Journal of Operation Research , vol.131 , pp. 253-261
    • Dia, H.1
  • 22
    • 0026128928 scopus 로고
    • Nonparametric regression and short-term freeway traffic forecasting
    • Davis, G. A., and N. L. Nihan. Nonparametric Regression and Short-Term Freeway Traffic Forecasting. ASCE Journal of Transportation Engineering, Vol. 117, No. 2, 1991, pp. 178-188.
    • (1991) ASCE Journal of Transportation Engineering , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 23
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • Smith, B. L., and M. J. Demetsky. Traffic Flow Forecasting: Comparison of Modeling Approaches. ASCE Journal of Transportation Engineering, Vol. 123, No. 4, 1997, pp. 261-266.
    • (1997) ASCE Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 24
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and non-parametric models for traffic flow forecasting
    • Smith, B. L., B. M. Williams, and R. K. Oswald. Comparison of Parametric and Non-Parametric Models for Traffic Flow Forecasting. Transportation Research Part C, Vol. 10, No. 4, 2002, pp. 303-321.
    • (2002) Transportation Research Part C , vol.10 , Issue.4 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Oswald, R.K.3
  • 26
    • 0030298951 scopus 로고    scopus 로고
    • Combining kohonen maps with ARIMA time series models to forecast traffic flow
    • Van Der Voort, M., M. Dougherty, and S. Watson. Combining Kohonen Maps with ARIMA Time Series Models to Forecast Traffic Flow. Transportation Research Part C, Vol. 4, No. 5, 1996, pp. 307-318.
    • (1996) Transportation Research Part C , vol.4 , Issue.5 , pp. 307-318
    • Van Der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 28
    • 18144367659 scopus 로고    scopus 로고
    • Quantifying uncertainties in a national forecasting model
    • Hugosson, M. B. Quantifying Uncertainties in a National Forecasting Model. Transportation Research Part A, Vol. 39, No. 6, 2005, pp. 531-547.
    • (2005) Transportation Research Part A , vol.39 , Issue.6 , pp. 531-547
    • Hugosson, M.B.1
  • 30
    • 33645673658 scopus 로고    scopus 로고
    • Modeling traffic volatility dynamics in an urban network
    • Transportation Research Board of the National Academies, Washington, D.C.
    • Kamarianakis, Y., A. Kanas, and P. Prastacos. Modeling Traffic Volatility Dynamics in an Urban Network. In Transportation Research Record: Journal of the Transportation Research Board, No. 1923, Transportation Research Board of the National Academies, Washington, D.C., 2005, pp. 18-27.
    • (2005) Transportation Research Record: Journal of the Transportation Research Board , Issue.1923 , pp. 18-27
    • Kamarianakis, Y.1    Kanas, A.2    Prastacos, P.3
  • 31
    • 67649171524 scopus 로고    scopus 로고
    • Statistical model for forecasting link travel time variability
    • Sohn, K., and D. Kim. Statistical Model for Forecasting Link Travel Time Variability. ASCE Journal of Transportation Engineering, Vol. 135, No. 7, 2009, pp. 440-453.
    • (2009) ASCE Journal of Transportation Engineering , vol.135 , Issue.7 , pp. 440-453
    • Sohn, K.1    Kim, D.2
  • 32
    • 33846857346 scopus 로고    scopus 로고
    • Real-time traffic volatility forecasting in urban arterial networks
    • Transportation Research Board of the National Academies, Washington, D.C.
    • Tsekeris, T., and A. Stathopoulos. Real-Time Traffic Volatility Forecasting in Urban Arterial Networks. In Transportation Research Record: Journal of the Transportation Research Board, No. 1964, Transportation Research Board of the National Academies, Washington, D.C., 2006, pp. 146-156.
    • (2006) Transportation Research Record: Journal of the Transportation Research Board , Issue.1964 , pp. 146-156
    • Tsekeris, T.1    Stathopoulos, A.2
  • 33
    • 0000013567 scopus 로고
    • Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation
    • Engle, R. F. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, Vol. 50, 1982, pp. 987-1008.
    • (1982) Econometrica , vol.50 , pp. 987-1008
    • Engle, R.F.1
  • 34
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroscedasticity
    • Bollerslev, T. Generalized Autoregressive Conditional Heteroscedasticity. Journal of Econometrics, Vol. 31, 1986, pp. 307-327.
    • (1986) Journal of Econometrics , vol.31 , pp. 307-327
    • Bollerslev, T.1
  • 36
    • 0025434973 scopus 로고
    • Graphical methods for evaluating and comparing confidence-interval procedures
    • Kang, K., and B. Schmeiser. Graphical Methods for Evaluating and Comparing Confidence-Interval Procedures. Operations Research, Vol. 38, No. 3, 1990, pp. 546-553.
    • (1990) Operations Research , vol.38 , Issue.3 , pp. 546-553
    • Kang, K.1    Schmeiser, B.2
  • 37
    • 85173194435 scopus 로고    scopus 로고
    • On choosing a single criterion for confidence-interval procedures
    • E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.
    • Schmeiser, B., and Y. Yeh. On Choosing a Single Criterion for Confidence-Interval Procedures. Proc., 2002 Winter Simulation Conference (E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds.), 2002.
    • Proc. 2002 Winter Simulation Conference , vol.2002
    • Schmeiser, B.1    Yeh, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.