메뉴 건너뛰기




Volumn , Issue 2256, 2011, Pages 51-59

Travel time prediction using k nearest neighbor method with combined data from vehicle detector system and automatic toll collection system

Author keywords

[No Author keywords available]

Indexed keywords

DECISION MAKING; FORECASTING; MOTION COMPENSATION; NEAREST NEIGHBOR SEARCH; NEURAL NETWORKS; TOLL HIGHWAYS; TRAFFIC CONTROL;

EID: 84863041488     PISSN: 03611981     EISSN: None     Source Type: Journal    
DOI: 10.3141/2256-07     Document Type: Article
Times cited : (87)

References (19)
  • 1
    • 0035724797 scopus 로고    scopus 로고
    • Dynamic freeway travel-time prediction with probe vehicle data: Link based versus path based
    • 01-2887
    • Chen, M., and S. I. J. Chien. Dynamic Freeway Travel-Time Prediction with Probe Vehicle Data: Link Based Versus Path Based. In Transporta-tion Research Record: Journal of the Transportation Research Board, No. 1768, TRB, National Research Council, Washington, D.C., 2001, pp. 157-161. (Pubitemid 34254756)
    • (2001) Transportation Research Record , Issue.1768 , pp. 157-161
    • Chen, M.1    Chien, S.I.J.2
  • 2
    • 1942440883 scopus 로고    scopus 로고
    • Predicting travel times for south jersey real-time motorist information system
    • No. 1855, Transportation Research Board of the National Academies, Washington, D.C.
    • Chien, S. I. J., X. Liu, and K. Ozbay. Predicting Travel Times for South Jersey Real-Time Motorist Information System. In Transporta-tion Research Record: Journal of the Transportation Research Board, No. 1855, Transportation Research Board of the National Academies, Washington, D.C., 2003, pp. 32-40.
    • (2003) Transporta-tion Research Record: Journal of the Transportation Research Board , pp. 32-40
    • Chien, S.I.J.1    Liu, X.2    Ozbay, K.3
  • 3
    • 33646405461 scopus 로고    scopus 로고
    • Modeling urban link travel time with inductive loop detector data by using the k-nn method
    • No. 1935, Transportation Research Board of the National Acad-emies, Washington, D.C.
    • Robinson, S., and J. W. Polak. Modeling Urban Link Travel Time with Inductive Loop Detector Data by Using the k-NN Method. In Trans-portation Research Record: Journal of the Transportation Research Board, No. 1935, Transportation Research Board of the National Acad-emies, Washington, D.C., 2005, pp. 47-56.
    • (2005) Trans-portation Research Record: Journal of the Transportation Research Board , pp. 47-56
    • Robinson, S.1    Polak, J.W.2
  • 6
    • 0034432244 scopus 로고    scopus 로고
    • Day-to-day travel-time trends and travel-time prediction from loop-detector data
    • 00-1596
    • Kwon, J., B. Coifman, and P. Bickel. Day-to-Day Travel-Time Trends and Travel-Time Prediction from Loop-Detector Data. In Transporta-tion Research Record: Journal of the Transportation Research Board, No. 1717, TRB, National Research Council, Washington, D.C., 2000, pp. 120-129. (Pubitemid 32792416)
    • (2000) Transportation Research Record , Issue.1717 , pp. 120-129
    • Kwon, J.1    Coifman, B.2    Bickel, P.3
  • 7
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • Zhang, G., B. E. Patuwo, and M. Y. Hu. Forecasting with Artificial Neural Networks: The State of the Art. International Journal of Fore-casting, Vol. 14, No. 1, 1998, pp. 35-62. (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Y. Hu, M.3
  • 8
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel times using modular neural networks
    • Park, D., and L. R. Rilett. Forecasting Multiple-Period Freeway Link Travel Times Using Modular Neural Networks. In Transportation Research Record 1617, TRB, National Research Council, Washington, D.C., 1998, pp. 163-170. (Pubitemid 128553708)
    • (1998) Transportation Research Record , Issue.1617 , pp. 163-170
    • Park, D.1    Rilett, L.R.2
  • 10
    • 0036974476 scopus 로고    scopus 로고
    • Freeway travel time prediction with state-space neural networks: Modeling state-space dynamics with recurrent neural networks
    • No. 1811, Transportation Research Board of the National Academies, Washington, D.C.
    • van Lint, J. W. C., S. P. Hoogendoorn, and H. J. van Zuylen. Freeway Travel Time Prediction with State-Space Neural Networks: Modeling State-Space Dynamics with Recurrent Neural Networks. In Transporta-tion Research Record: Journal of the Transportation Research Board, No. 1811, Transportation Research Board of the National Academies, Washington, D.C., 2002, pp. 30-39.
    • (2002) Transporta-tion Research Record: Journal of the Transportation Research Board , pp. 30-39
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 11
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • van Lint, J. W. C., S. P. Hoogendoorn, and H. J. van Zuylen. Accurate Freeway Travel Time Prediction with State-Space Neural Networks Under Missing Data. Transportation Research Part C, Vol. 13, 2005, pp. 347-369.
    • (2005) Transportation Research Part C , vol.13 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 12
    • 33846546622 scopus 로고    scopus 로고
    • Predicting urban arterial travel time with state-space neural networks and Kalman filters
    • Artificial Intelligence and Advanced Computing Applications
    • Liu, H., H. J. van Zuylen, H. van Lint, and M. Salomons. Predicting Urban Arterial Travel Time with State-Space Neural Networks and Kalman Filters. In Transportation Research Record: Journal of the Transportation Research Board, No. 1968, Transportation Research Board of the National Academies, Washington, D.C., 2006, pp. 99-108. (Pubitemid 46167296)
    • (2006) Transportation Research Record , Issue.1968 , pp. 99-108
    • Liu, H.1    Van Zuylen, H.2    Van Lint, H.3    Salomons, M.4
  • 18
    • 76149118802 scopus 로고    scopus 로고
    • Application of advanced traffic information systems: Field test of a travel-time prediction sys-tem with widely spaced detectors
    • No. 2129, Transportation Research Board of the National Academies, Washington, D.C.
    • Zou, N., J. Wang, G.-L. Chang, and J. Paracha. Application of Advanced Traffic Information Systems: Field Test of a Travel-Time Prediction Sys-tem with Widely Spaced Detectors. In Transportation Research Record: Journal of the Transportation Research Board, No. 2129, Transportation Research Board of the National Academies, Washington, D.C., 2009, pp. 62-72.
    • (2009) Transportation Research Record: Journal of the Transportation Research Board , pp. 62-72
    • Zou, N.1    Wang, J.2    Chang, G.-L.3    Paracha, J.4
  • 19
    • 0003693579 scopus 로고    scopus 로고
    • TRB National Research Council, Washing-ton, D.C.
    • Highway Capacity Manual. TRB, National Research Council, Washing-ton, D.C., 2000.
    • (2000) Highway Capacity Manual


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.