메뉴 건너뛰기




Volumn 19, Issue 6, 2011, Pages 1306-1318

A bayesian dynamic linear model approach for real-time short-term freeway travel time prediction

Author keywords

Adaptive control; Advanced Traveler Information Systems; Bayesian inference; Prediction confidence intervals; Real time travel time prediction

Indexed keywords

ADAPTIVE CONTROL SYSTEMS; BAYESIAN NETWORKS; FORECASTING; INFERENCE ENGINES; LAGRANGE MULTIPLIERS; REAL TIME SYSTEMS; TIME VARYING CONTROL SYSTEMS; TRAFFIC CONGESTION; TRAVEL TIME;

EID: 80052718938     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2010.10.005     Document Type: Article
Times cited : (226)

References (39)
  • 1
    • 33747421006 scopus 로고    scopus 로고
    • Performance evaluation of an adaptive travel time prediction model
    • Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, 13-16 September, 2005.
    • Bajwa, S.I, Chung, E., Kuwahara, M., 2005. Performance evaluation of an adaptive travel time prediction model. In: Proceedings of the 8th International IEEE Conference on Intelligent Transportation Systems, Vienna, Austria, 13-16 September, 2005.
    • (2005)
    • Bajwa, S.I.1    Chung, E.2    Kuwahara, M.3
  • 2
    • 33847119831 scopus 로고    scopus 로고
    • Short-term traffic flow prediction with regime switching models
    • Cetin M., Comert G. Short-term traffic flow prediction with regime switching models. Transportation Research Record 2006, 1965:23-31.
    • (2006) Transportation Research Record , vol.1965 , pp. 23-31
    • Cetin, M.1    Comert, G.2
  • 3
    • 0035724797 scopus 로고    scopus 로고
    • Dynamic freeway travel-time prediction with probe vehicle data, link based versus path based
    • Chen M., Chien S. Dynamic freeway travel-time prediction with probe vehicle data, link based versus path based. Transportation Research Record 2001, 1768:157-161.
    • (2001) Transportation Research Record , vol.1768 , pp. 157-161
    • Chen, M.1    Chien, S.2
  • 4
    • 0345375534 scopus 로고    scopus 로고
    • Dynamic travel time prediction with real-time and historic data
    • Chien S., Kuchipudi C.M. Dynamic travel time prediction with real-time and historic data. Journal of Transportation Engineering 2003, 129(6):608-616.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.6 , pp. 608-616
    • Chien, S.1    Kuchipudi, C.M.2
  • 5
    • 62949085512 scopus 로고    scopus 로고
    • Adaptive kalman filter based freeway travel time estimation
    • Paper Presented in the 84th TRB Annual Meeting, Washington, DC, January 2005.
    • Chu, L.Y., Oh, J.S., Recker, W., 2005. Adaptive kalman filter based freeway travel time estimation. In: Paper Presented in the 84th TRB Annual Meeting, Washington, DC, January 2005.
    • (2005)
    • Chu, L.Y.1    Oh, J.S.2    Recker, W.3
  • 6
    • 80052744249 scopus 로고    scopus 로고
    • Shanghai Railway Bureau Freight Forecasting Model and Management Information System Development. Master Thesis, Shanghai Tongji University, Shanghai, China.
    • Fei, X., 2000. Shanghai Railway Bureau Freight Forecasting Model and Management Information System Development. Master Thesis, Shanghai Tongji University, Shanghai, China.
    • (2000)
    • Fei, X.1
  • 7
    • 85029828814 scopus 로고    scopus 로고
    • Federal Highway Administration, 1998. Travel Time Data Collection Handbook. Report FHWA-PL-98-035, Office of Highway Information Management, Federal Highway Administration, US Department of Transportation.
    • Federal Highway Administration, 1998. Travel Time Data Collection Handbook. Report FHWA-PL-98-035, Office of Highway Information Management, Federal Highway Administration, US Department of Transportation.
  • 8
    • 42149185007 scopus 로고    scopus 로고
    • Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time
    • Juri N.R., Unnikrishnan A., Waller S.T. Integrated traffic simulation-statistical analysis framework for online prediction of freeway travel time. Transportation Research Record 2007, 2039:24-31.
    • (2007) Transportation Research Record , vol.2039 , pp. 24-31
    • Juri, N.R.1    Unnikrishnan, A.2    Waller, S.T.3
  • 9
    • 67349277727 scopus 로고    scopus 로고
    • Memory properties and fractional integration in transportation time-series
    • Karlaftisand M.G., Vlahogianni E.I. Memory properties and fractional integration in transportation time-series. Transportation Research Part C 2009, 17(4):444-453.
    • (2009) Transportation Research Part C , vol.17 , Issue.4 , pp. 444-453
    • Karlaftisand, M.G.1    Vlahogianni, E.I.2
  • 10
    • 1942537038 scopus 로고    scopus 로고
    • Development of a hybrid model for dynamic travel-time prediction
    • Kuchipudi C.M., Chien S. Development of a hybrid model for dynamic travel-time prediction. Transportation Research Record 2003, 1855:22-31.
    • (2003) Transportation Research Record , vol.1855 , pp. 22-31
    • Kuchipudi, C.M.1    Chien, S.2
  • 11
    • 33646433965 scopus 로고    scopus 로고
    • Travel time prediction algorithm scalable to freeway networks with many nodes with arbitrary travel routes
    • Kwon J.Y., Petty K. Travel time prediction algorithm scalable to freeway networks with many nodes with arbitrary travel routes. Transportation Research Record 2005, 1935:147-153.
    • (2005) Transportation Research Record , vol.1935 , pp. 147-153
    • Kwon, J.Y.1    Petty, K.2
  • 12
    • 0034432244 scopus 로고    scopus 로고
    • Day-to-day travel-time trends and travel-time prediction from loop detector data
    • Kwon J.Y., Coifman B., Bickel P. Day-to-day travel-time trends and travel-time prediction from loop detector data. Transportation Research Record 2000, 1717:120-129.
    • (2000) Transportation Research Record , vol.1717 , pp. 120-129
    • Kwon, J.Y.1    Coifman, B.2    Bickel, P.3
  • 13
    • 84902544036 scopus 로고    scopus 로고
    • Short-term travel time predictions using support vector regression
    • Paper Presented in the 87th TRB Annual Meeting, Washington, DC, January 2008.
    • Lam, S.H., Toan, T.D., 2008. Short-term travel time predictions using support vector regression. In: Paper Presented in the 87th TRB Annual Meeting, Washington, DC, January 2008.
    • (2008)
    • Lam, S.H.1    Toan, T.D.2
  • 14
    • 38749098698 scopus 로고    scopus 로고
    • Investigation of temporal freeway traffic patterns in reconstructed state spaces
    • Lan L.W., Sheu J.B., Huang Y.S. Investigation of temporal freeway traffic patterns in reconstructed state spaces. Transportation Research Part C 2008, 16(3):116-136.
    • (2008) Transportation Research Part C , vol.16 , Issue.3 , pp. 116-136
    • Lan, L.W.1    Sheu, J.B.2    Huang, Y.S.3
  • 15
    • 58349122912 scopus 로고    scopus 로고
    • A knowledge based real-time travel time prediction system for urban network
    • Lee W.H., Tseng S.S., Tsai S.H. A knowledge based real-time travel time prediction system for urban network. Expert System with Applications 2009, 36:4239-4247.
    • (2009) Expert System with Applications , vol.36 , pp. 4239-4247
    • Lee, W.H.1    Tseng, S.S.2    Tsai, S.H.3
  • 17
    • 33846546622 scopus 로고    scopus 로고
    • Predicting urban arterial travel time with state-space neural networks and Kalman filters
    • Liu H., van Zuylen H., van Lint H., Salomons M. Predicting urban arterial travel time with state-space neural networks and Kalman filters. Transportation Research Record 2006, 1968:99-108.
    • (2006) Transportation Research Record , vol.1968 , pp. 99-108
    • Liu, H.1    van Zuylen, H.2    van Lint, H.3    Salomons, M.4
  • 18
    • 1942473008 scopus 로고    scopus 로고
    • Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway
    • Nanthawichit C., Nakatsuji T., Suzuki H. Application of probe-vehicle data for real-time traffic-state estimation and short-term travel-time prediction on a freeway. Transportation Research Record 2003, 2987:49-59.
    • (2003) Transportation Research Record , vol.2987 , pp. 49-59
    • Nanthawichit, C.1    Nakatsuji, T.2    Suzuki, H.3
  • 19
    • 35048897050 scopus 로고    scopus 로고
    • A Bayesian approach for estimating link travel time on urban arterial road network
    • Park T., Lee S. A Bayesian approach for estimating link travel time on urban arterial road network. Lecture Notes in Computer Science 2004, 3043:1017-1025.
    • (2004) Lecture Notes in Computer Science , vol.3043 , pp. 1017-1025
    • Park, T.1    Lee, S.2
  • 20
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel times using modular neural networks
    • Park D.J., Rilett L.R. Forecasting multiple-period freeway link travel times using modular neural networks. Transportation Research Record 1998, 1617:163-170.
    • (1998) Transportation Research Record , vol.1617 , pp. 163-170
    • Park, D.J.1    Rilett, L.R.2
  • 22
    • 0035718404 scopus 로고    scopus 로고
    • Direct forecasting of freeway corridor travel times using spectral basis neural networks
    • Rilett L.R., Park D.J. Direct forecasting of freeway corridor travel times using spectral basis neural networks. Transportation Research Record 2001, 1752:140-147.
    • (2001) Transportation Research Record , vol.1752 , pp. 140-147
    • Rilett, L.R.1    Park, D.J.2
  • 23
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transportation Research Part C 2003, 11(2):121-135.
    • (2003) Transportation Research Part C , vol.11 , Issue.2 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 24
    • 33846857346 scopus 로고    scopus 로고
    • Real-time traffic volatility forecasting in urban arterial networks
    • Tsekeris T., Stathopoulos A. Real-time traffic volatility forecasting in urban arterial networks. Transportation Research Record 2006, 1964:146-156.
    • (2006) Transportation Research Record , vol.1964 , pp. 146-156
    • Tsekeris, T.1    Stathopoulos, A.2
  • 27
    • 67949102009 scopus 로고    scopus 로고
    • Bayesian committee of neural networks to predict travel times with confidence intervals
    • van Hinsbergen C.P., van Lint J.W.C., van Zuylen H.J. Bayesian committee of neural networks to predict travel times with confidence intervals. Transportation Research Part C 2009, 17(5):498-509.
    • (2009) Transportation Research Part C , vol.17 , Issue.5 , pp. 498-509
    • van Hinsbergen, C.P.1    van Lint, J.W.C.2    van Zuylen, H.J.3
  • 28
    • 79951977076 scopus 로고    scopus 로고
    • Confidence intervals for real-time freeway travel time prediction
    • Proceedings of the 2003 IEEE Conference on Intelligent Transportation Systems, Shanghai, China, IEEE.
    • van Lint, J.W.C., 2003. Confidence intervals for real-time freeway travel time prediction. In: Proceedings of the 2003 IEEE Conference on Intelligent Transportation Systems, Shanghai, China, IEEE.
    • (2003)
    • van Lint, J.W.C.1
  • 30
    • 0036974476 scopus 로고    scopus 로고
    • Freeway travel time prediction with state-space neural networks-modeling state-space dynamics with recurrent neural networks
    • van Lint J.W.C., Hoogendoorn S.P., Van Zuylen H.J. Freeway travel time prediction with state-space neural networks-modeling state-space dynamics with recurrent neural networks. Transportation Research Record 2002, 1811:30-39.
    • (2002) Transportation Research Record , vol.1811 , pp. 30-39
    • van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 32
    • 33750338259 scopus 로고    scopus 로고
    • Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term time-series of traffic volume. Transportation Research Part C 2006, 14(2):351-367.
    • (2006) Transportation Research Part C , vol.14 , Issue.2 , pp. 351-367
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 33
    • 11144262651 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extended Kalman filter: a general approach
    • Wang Y., Papageorgiou M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transportation Research Part B 2005, 39(2):141-167.
    • (2005) Transportation Research Part B , vol.39 , Issue.2 , pp. 141-167
    • Wang, Y.1    Papageorgiou, M.2
  • 34
    • 33748429561 scopus 로고    scopus 로고
    • Renaissance - a unified macroscopic model based approach to real-time freeway network traffic surveillance
    • Wang Y., Papageorgiou M., Messmer A. Renaissance - a unified macroscopic model based approach to real-time freeway network traffic surveillance. Transportation Research Part C 2006, 14(3):190-212.
    • (2006) Transportation Research Part C , vol.14 , Issue.3 , pp. 190-212
    • Wang, Y.1    Papageorgiou, M.2    Messmer, A.3
  • 36
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results
    • Williams B.M., Hoel L.A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: theoretical basis and empirical results. ASCE Journal of Transportation Engineering 2003, 129(6):664-672.
    • (2003) ASCE Journal of Transportation Engineering , vol.129 , Issue.6 , pp. 664-672
    • Williams, B.M.1    Hoel, L.A.2
  • 37
    • 14744291722 scopus 로고    scopus 로고
    • Online recursive algorithm for short-term traffic prediction
    • Yang F., Yin Z.Z., Liu H., Ran B. Online recursive algorithm for short-term traffic prediction. Transportation Research Record 2004, 1879:1-8.
    • (2004) Transportation Research Record , vol.1879 , pp. 1-8
    • Yang, F.1    Yin, Z.Z.2    Liu, H.3    Ran, B.4
  • 38
    • 0042664086 scopus 로고    scopus 로고
    • Short-term travel time prediction using a time-varying coefficient linear model
    • Zhang X.Y., Rice J.A. Short-term travel time prediction using a time-varying coefficient linear model. Transportation Research Part C 2003, 11(8):187-210.
    • (2003) Transportation Research Part C , vol.11 , Issue.8 , pp. 187-210
    • Zhang, X.Y.1    Rice, J.A.2
  • 39
    • 34250655003 scopus 로고    scopus 로고
    • A structural state space model for real-time origin-destination demand estimation and prediction in a day-to-day updating framework
    • Zhou X., Mahmassani H.S. A structural state space model for real-time origin-destination demand estimation and prediction in a day-to-day updating framework. Transportation Research Part B 2007, 41(8):823-840.
    • (2007) Transportation Research Part B , vol.41 , Issue.8 , pp. 823-840
    • Zhou, X.1    Mahmassani, H.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.