메뉴 건너뛰기




Volumn 12, Issue 3, 2008, Pages 102-112

Short-term traffic flow forecasting using fuzzy logic system methods

Author keywords

Forecasting; Fuzzy logic system; Traffic flow

Indexed keywords

CHLORINE COMPOUNDS; FORECASTING; FUZZY INFERENCE; FUZZY SETS; FUZZY SYSTEMS; TRAFFIC CONTROL; TRAFFIC SURVEYS;

EID: 49249101709     PISSN: 15472450     EISSN: 15472442     Source Type: Journal    
DOI: 10.1080/15472450802262281     Document Type: Article
Times cited : (116)

References (35)
  • 2
    • 0018729076 scopus 로고
    • Analysis of freeway traffic time-series data by using Box-Jenkins techniques
    • Ahmed, M. S., and Cook, A. R. (1979). Analysis of freeway traffic time-series data by using Box-Jenkins techniques. Transportation Research Record, 722, 1-9.
    • (1979) Transportation Research Record , vol.722 , pp. 1-9
    • Ahmed, M.S.1    Cook, A.R.2
  • 3
    • 49249099120 scopus 로고
    • University of Baltimore. Available:, Accessed October 24, 2006
    • Arsham, H. (1994). Forecasting by Smoothing Method. University of Baltimore. Available: http://home.ubalt.edu/ntsbarsh/Businessstat/otherapplets/ ForecaSmo.htm. (Accessed October 24, 2006).
    • (1994) Forecasting by Smoothing Method
    • Arsham, H.1
  • 5
    • 0004027569 scopus 로고
    • Improved freeway incident, detection using fuzzy set theory
    • Chang, E. C. P., and Wang, S. H. (1994). Improved freeway incident, detection using fuzzy set theory. Transportation Research Record, 1453, 75-82.
    • (1994) Transportation Research Record , vol.1453 , pp. 75-82
    • Chang, E.C.P.1    Wang, S.H.2
  • 6
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen, H. B., and Grant-Muller, S. (2001). Use of sequential learning for short-term traffic flow forecasting. Transportation Research Part C, 9(5), 319-336.
    • (2001) Transportation Research Part C , vol.9 , Issue.5 , pp. 319-336
    • Chen, H.B.1    Grant-Muller, S.2
  • 7
    • 0026128928 scopus 로고
    • Nonparametric regression and short-term freeway traffic forecasting
    • Davis, G. A., and Nihan, N. L. (1991). Nonparametric regression and short-term freeway traffic forecasting. Journal of Transportation Engineering, 117(2), 178-188.
    • (1991) Journal of Transportation Engineering , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 10
    • 33947602485 scopus 로고
    • Neural networks in designing fuzzy systems for real world applications
    • Halgamuge S. K., and Glesner, M. ( 1994). Neural networks in designing fuzzy systems for real world applications. Fuzzy Sets and Systems, 65, 1-12.
    • (1994) Fuzzy Sets and Systems , vol.65 , pp. 1-12
    • Halgamuge, S.K.1    Glesner, M.2
  • 12
    • 33746382515 scopus 로고    scopus 로고
    • Soft-computing techniques applied to short-term traffic flow forecasting
    • Huisken, G. (2003). Soft-computing techniques applied to short-term traffic flow forecasting. Systems Analysis Modelling Simulation, 43(2), 165-173.
    • (2003) Systems Analysis Modelling Simulation , vol.43 , Issue.2 , pp. 165-173
    • Huisken, G.1
  • 13
    • 49249120096 scopus 로고    scopus 로고
    • Analyzing different fuzzy traffic signal controllers for isolated intersections
    • Washington, DC: Transportation Research Board, National Research Council
    • Jacques, Maria Alice P., Niittymäki, Jarkko.,and Pursula, Matti. (2002). Analyzing different fuzzy traffic signal controllers for isolated intersections. TRB 81st Annual Meeting (CD-ROM). Washington, DC: Transportation Research Board, National Research Council.
    • (2002) TRB 81st Annual Meeting (CD-ROM)
    • Jacques, M.A.P.1    Niittymäki, J.2    Pursula, M.3
  • 14
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • Jiang, X., and Adeli, H. (2005). Dynamic wavelet neural network model for traffic flow forecasting. Journalof Transportation Engineering, 131(10), 771-779.
    • (2005) Journalof Transportation Engineering , vol.131 , Issue.10 , pp. 771-779
    • Jiang, X.1    Adeli, H.2
  • 15
    • 49249122578 scopus 로고    scopus 로고
    • Fuzzy Logic: An Introduction. Encoder
    • on-line at:, Accessed September 5, 2006
    • Kaehler, S. D. (1998). Fuzzy Logic: An Introduction. Encoder. Accessable on-line at: http://www.seattlerobotics.org/encoder/. (Accessed September 5, 2006).
    • (1998) Accessable
    • Kaehler, S.D.1
  • 17
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural network or statistical models for short-term motorway traffic forecasting?
    • Kirby, H. R., Watson, S. M., and Dougherty, M. S. (1997). Should we use neural network or statistical models for short-term motorway traffic forecasting? International Journal of Forecasting, 13(1), 43-50.
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 43-50
    • Kirby, H.R.1    Watson, S.M.2    Dougherty, M.S.3
  • 18
    • 0033355545 scopus 로고    scopus 로고
    • A traffic flow simulator for network reliability assessment
    • Lam, W. H. K., and Xu, G. (1999). A traffic flow simulator for network reliability assessment. Journal of Advanced Transportation, 33(2), 159-182.
    • (1999) Journal of Advanced Transportation , vol.33 , Issue.2 , pp. 159-182
    • Lam, W.H.K.1    Xu, G.2
  • 19
    • 0343274484 scopus 로고
    • On forecasting freeway occupancies and volumes
    • Levin, M., and Tsao, Y. (1980). On forecasting freeway occupancies and volumes. Transportation Research Record, 773, 47-49.
    • (1980) Transportation Research Record , vol.773 , pp. 47-49
    • Levin, M.1    Tsao, Y.2
  • 20
    • 3743148670 scopus 로고
    • Advanced Freeway System Ramp Metering Strategies for Texas
    • 1232-23. College Station: Texas Transportation Institute
    • Messer, C. J. (1993). Advanced Freeway System Ramp Metering Strategies for Texas. TTI Research Report 1232-23. College Station: Texas Transportation Institute.
    • (1993) TTI Research Report
    • Messer, C.J.1
  • 21
    • 0016349498 scopus 로고
    • The prediction of traffic flow volumes based on spectral analysis
    • Nicholson, H., and Swann, C. (1974). The prediction of traffic flow volumes based on spectral analysis. Transportation Research, 8, 533-538.
    • (1974) Transportation Research , vol.8 , pp. 533-538
    • Nicholson, H.1    Swann, C.2
  • 22
    • 0012058003 scopus 로고    scopus 로고
    • Application of fuzzy logic to the control of a pedestrian crossing signal
    • Nittymaki, J., and Kikuchi, S. (1998). Application of fuzzy logic to the control of a pedestrian crossing signal. Transportation Research Record, 1651, 30-38.
    • (1998) Transportation Research Record , vol.1651 , pp. 30-38
    • Nittymaki, J.1    Kikuchi, S.2
  • 23
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • Okutani, I., and Stephanedes, Y. J. (1984). Dynamic prediction of traffic volume through Kalman filtering theory. Transportation Research Part B, 18(1), 1-11.
    • (1984) Transportation Research Part B , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 24
    • 0003023581 scopus 로고    scopus 로고
    • Short-term freeway traffic volume forecasting using radial basis function neural network
    • Park, B., Messer, C. J., and Urbanik II, T. (1998). Short-term freeway traffic volume forecasting using radial basis function neural network. Transportation Research Record, 1651, 39-47.
    • (1998) Transportation Research Record , vol.1651 , pp. 39-47
    • Park, B.1    Messer, C.J.2    Urbanik II, T.3
  • 25
    • 0036960199 scopus 로고    scopus 로고
    • Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting
    • Park, B. (2002). Hybrid neuro-fuzzy application in short-term freeway traffic volume forecasting. Transportation Research Record, 1802, 190-196.
    • (2002) Transportation Research Record , vol.1802 , pp. 190-196
    • Park, B.1
  • 26
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Roger, J. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Transaction on Systems, Man, and Cybernetics, 23(3), 665-685.
    • (1993) IEEE Transaction on Systems, Man, and Cybernetics , vol.23 , Issue.3 , pp. 665-685
    • Roger, J.1
  • 27
    • 0001891123 scopus 로고
    • Short-term traffic flow prediction: Neural network approach
    • Smith, B. L., and Demetsky, M. J. (1994). Short-term traffic flow prediction: neural network approach. Transportation Research Record, 1453, 98-104.
    • (1994) Transportation Research Record , vol.1453 , pp. 98-104
    • Smith, B.L.1    Demetsky, M.J.2
  • 28
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • ASCE
    • Smith, B. L., and Demetsky, M. J. (1997). Traffic flow forecasting: Comparison of modeling approaches. Journal of Transportation Engineering, 123(4), ASCE, 261-266.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.J.2
  • 30
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time series models to forecast traffic flow
    • Van Der Voort, M., Dougherty, M., and Watson, S. (1996). Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transportation Research Part C, 4(5), 307-318.
    • (1996) Transportation Research Part C , vol.4 , Issue.5 , pp. 307-318
    • Van Der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 31
    • 0032207514 scopus 로고    scopus 로고
    • Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models
    • Williams, B. M., Durvasula, P. K., and Brown, D. E. (1998). Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models. Transportation Research Record, 1644, 132-141.
    • (1998) Transportation Research Record , vol.1644 , pp. 132-141
    • Williams, B.M.1    Durvasula, P.K.2    Brown, D.E.3
  • 33
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using a fuzzy-neural approach
    • Yin, H. B., Wong, S. C., Xu, J. M., and Wong, C. K. (2002). Urban traffic flow prediction using a fuzzy-neural approach. Transportation Research Part C, 10(2), 85-98.
    • (2002) Transportation Research Part C , vol.10 , Issue.2 , pp. 85-98
    • Yin, H.B.1    Wong, S.C.2    Xu, J.M.3    Wong, C.K.4
  • 35
    • 31044437283 scopus 로고    scopus 로고
    • Short-term traffic flow prediction: Bayesian combined neural network approach
    • Zheng, W., Lee, D., and Shi, Q. (2006). Short-term traffic flow prediction: Bayesian combined neural network approach. Journal of Transportation Engineering, 132(2), 114-121.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Lee, D.2    Shi, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.