메뉴 건너뛰기




Volumn 16, Issue 5, 2008, Pages 554-573

Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow

Author keywords

Fuzzy rule based systems; Global optimization; Short term forecasting; Traffic flow modeling; Urban networks

Indexed keywords

FORECASTING; FUZZY INFERENCE; FUZZY RULES; GENETIC ALGORITHMS; GLOBAL OPTIMIZATION; MEMBERSHIP FUNCTIONS;

EID: 45849138568     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2007.11.003     Document Type: Article
Times cited : (121)

References (39)
  • 1
    • 0010135212 scopus 로고
    • Freeway ramp control using fuzzy set theory for inexact reasoning
    • Chen L.L., May A.D., and Auslander D.M. Freeway ramp control using fuzzy set theory for inexact reasoning. Transportation Research Part A 24 1 (1990) 15-25
    • (1990) Transportation Research Part A , vol.24 , Issue.1 , pp. 15-25
    • Chen, L.L.1    May, A.D.2    Auslander, D.M.3
  • 4
    • 0029485810 scopus 로고
    • A review of neural networks applied to transport
    • Dougherty M. A review of neural networks applied to transport. Transportation Research Part C 3 4 (1995) 247-260
    • (1995) Transportation Research Part C , vol.3 , Issue.4 , pp. 247-260
    • Dougherty, M.1
  • 5
    • 85029886086 scopus 로고    scopus 로고
    • Federal Highway Administration, 2001. TSIS User's Guide. Contact No. DTFH61-95-C-00125, FHWA Office of Operations Research, Development and Technology, McLean, VA.
    • Federal Highway Administration, 2001. TSIS User's Guide. Contact No. DTFH61-95-C-00125, FHWA Office of Operations Research, Development and Technology, McLean, VA.
  • 6
    • 0037969928 scopus 로고    scopus 로고
    • Kalman filtering estimation of traffic counts for two network links in tandem
    • Gazis D., and Liu C. Kalman filtering estimation of traffic counts for two network links in tandem. Transportation Research Part B 37 8 (2003) 737-745
    • (2003) Transportation Research Part B , vol.37 , Issue.8 , pp. 737-745
    • Gazis, D.1    Liu, C.2
  • 9
    • 0003410290 scopus 로고
    • Princeton University Press, Princeton, NJ
    • Hamilton J.D. Time Series Analysis (1994), Princeton University Press, Princeton, NJ
    • (1994) Time Series Analysis
    • Hamilton, J.D.1
  • 12
    • 85029866632 scopus 로고    scopus 로고
    • Ishak, S., Alecsandru, C., 2003. Optimizing traffic prediction performance of neural networks under various topological, input and traffic condition settings. In: Transportation Research Board 82nd Annual Meeting, Washington, DC.
    • Ishak, S., Alecsandru, C., 2003. Optimizing traffic prediction performance of neural networks under various topological, input and traffic condition settings. In: Transportation Research Board 82nd Annual Meeting, Washington, DC.
  • 14
    • 0028532297 scopus 로고
    • Comparative evaluation of adaptive and neural-network exit demand prediction for freeway control
    • Kwon E., and Stephanedes Y.J. Comparative evaluation of adaptive and neural-network exit demand prediction for freeway control. Transportation Research Record 1446 (1994) 66-76
    • (1994) Transportation Research Record , vol.1446 , pp. 66-76
    • Kwon, E.1    Stephanedes, Y.J.2
  • 15
    • 0033226152 scopus 로고    scopus 로고
    • Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting
    • Lee S., and Fambro D.B. Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transportation Research Record 1678 (1999) 179-188
    • (1999) Transportation Research Record , vol.1678 , pp. 179-188
    • Lee, S.1    Fambro, D.B.2
  • 16
    • 84947563970 scopus 로고    scopus 로고
    • Time delay neural networks designed using genetic algorithms for short-term inter-city traffic forecasting
    • Lingras P., and Mountford P. Time delay neural networks designed using genetic algorithms for short-term inter-city traffic forecasting. Lecture Notes in Artificial Intelligence 2070 (2001) 290-299
    • (2001) Lecture Notes in Artificial Intelligence , vol.2070 , pp. 290-299
    • Lingras, P.1    Mountford, P.2
  • 17
    • 1942440525 scopus 로고    scopus 로고
    • Formulation and solution algorithm for dynamic traffic assignment model
    • Liu H.X., Ban X., Ran B., and Mirchandani P. Formulation and solution algorithm for dynamic traffic assignment model. Transportation Research Record 1854 (2003) 114-123
    • (2003) Transportation Research Record , vol.1854 , pp. 114-123
    • Liu, H.X.1    Ban, X.2    Ran, B.3    Mirchandani, P.4
  • 18
    • 0027721340 scopus 로고
    • Models for route choice behaviour in the presence of information from fuzzy set theory and approximate reasoning
    • Lotan T., and Koutsopoulos H.N. Models for route choice behaviour in the presence of information from fuzzy set theory and approximate reasoning. Transportation 20 2 (1993) 129-155
    • (1993) Transportation , vol.20 , Issue.2 , pp. 129-155
    • Lotan, T.1    Koutsopoulos, H.N.2
  • 19
    • 0016368711 scopus 로고
    • Applications of fuzzy algorithm for control a simple dynamic plant
    • Mamdani E.H. Applications of fuzzy algorithm for control a simple dynamic plant. Proceedings of the IEE 1212 12 (1974) 1585-1588
    • (1974) Proceedings of the IEE , vol.1212 , Issue.12 , pp. 1585-1588
    • Mamdani, E.H.1
  • 24
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: comparison of modeling approaches
    • Smith B.L., and Demetsky M. Traffic flow forecasting: comparison of modeling approaches. Journal of Transportation Engineering 123 4 (1997) 261-266
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.L.1    Demetsky, M.2
  • 25
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametric and nonparametric models for traffic flow forecasting
    • Smith B.L., Williams B.M., and Oswald R.K. Comparison of parametric and nonparametric models for traffic flow forecasting. Transportation Research Part C 10 4 (2002) 303-321
    • (2002) Transportation Research Part C , vol.10 , Issue.4 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Oswald, R.K.3
  • 26
    • 0035724012 scopus 로고    scopus 로고
    • Temporal and spatial variations of real-time traffic data in urban areas
    • Stathopoulos A., and Karlaftis M.G. Temporal and spatial variations of real-time traffic data in urban areas. Transportation Research Record 1768 (2001) 135-140
    • (2001) Transportation Research Record , vol.1768 , pp. 135-140
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 27
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state-space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., and Karlaftis M.G. A multivariate state-space approach for urban traffic flow modeling and prediction. Transportation Research Part C 11 2 (2003) 121-135
    • (2003) Transportation Research Part C , vol.11 , Issue.2 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 28
    • 1642263251 scopus 로고    scopus 로고
    • Use of local linear regression model for short-term traffic forecasting
    • Sun H., Liu H.X., Xiao H., He R.R., and Ran B. Use of local linear regression model for short-term traffic forecasting. Transportation Research Record 1836 (2003) 143-150
    • (2003) Transportation Research Record , vol.1836 , pp. 143-150
    • Sun, H.1    Liu, H.X.2    Xiao, H.3    He, R.R.4    Ran, B.5
  • 31
    • 33845979473 scopus 로고    scopus 로고
    • Measuring variability in urban traffic flow by use of principal component analysis
    • Tsekeris T., and Stathopoulos A. Measuring variability in urban traffic flow by use of principal component analysis. Journal of Transportation and Statistics 9 1 (2006) 49-62
    • (2006) Journal of Transportation and Statistics , vol.9 , Issue.1 , pp. 49-62
    • Tsekeris, T.1    Stathopoulos, A.2
  • 32
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time series models to forecast traffic flow
    • Van der Voort M., Dougherty M., and Watson S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transportation Research Part C 4 5 (1996) 307-318
    • (1996) Transportation Research Part C , vol.4 , Issue.5 , pp. 307-318
    • Van der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 33
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golias J.C., and Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transport Reviews 24 5 (2004) 533-557
    • (2004) Transport Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 34
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., and Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C 13 3 (2005) 211-234
    • (2005) Transportation Research Part C , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 35
    • 0037305963 scopus 로고    scopus 로고
    • Modeling discrete choice behavior using concepts from fuzzy set theory, approximate reasoning and neural networks
    • Vythoulkas P.C., and Koutsopoulos H.N. Modeling discrete choice behavior using concepts from fuzzy set theory, approximate reasoning and neural networks. Transportation Research Part C 11 1 (2003) 51-73
    • (2003) Transportation Research Part C , vol.11 , Issue.1 , pp. 51-73
    • Vythoulkas, P.C.1    Koutsopoulos, H.N.2
  • 36
    • 0035563672 scopus 로고    scopus 로고
    • Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling
    • Williams B.M. Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling. Transportation Research Record 1776 (2001) 194-200
    • (2001) Transportation Research Record , vol.1776 , pp. 194-200
    • Williams, B.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.