-
1
-
-
4444266556
-
Short term freeway flow prediction using genetically-optimized time-delay based neural networks
-
California PATH Program, Univ. of California, Berkeley, CA
-
Abdulhai, B., Porwal, H., and Recher, W. (1999). "Short term freeway flow prediction using genetically-optimized time-delay based neural networks." Proc., 78th Annual Meeting of the Transportation Research Board, California PATH Program, Univ. of California, Berkeley, CA.
-
(1999)
Proc., 78th Annual Meeting of the Transportation Research Board
-
-
Abdulhai, B.1
Porwal, H.2
Recher, W.3
-
2
-
-
12244292245
-
Short-term traffic flow prediction using neuro-genetic algorithms
-
Abdulhai, B., Porwal, H., and Recher, W. (2002). "Short-term traffic flow prediction using neuro-genetic algorithms." J. Intell. Transp. Syst., 7(1), 3-41.
-
(2002)
J. Intell. Transp. Syst.
, vol.7
, Issue.1
, pp. 3-41
-
-
Abdulhai, B.1
Porwal, H.2
Recher, W.3
-
3
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
-
Banerjee, O., Ghaoui, L., and Aspremont, A. (2008). "Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data." J. Mach. Learn. Res., 9, 485-516.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
Ghaoui, L.2
Aspremont, A.3
-
4
-
-
0031189914
-
Multitask learning
-
Caruana, R. (1997). "Multitask learning." Mach. Learn., 28(1), 41-75.
-
(1997)
Mach. Learn.
, vol.28
, Issue.1
, pp. 41-75
-
-
Caruana, R.1
-
5
-
-
0035480351
-
Use of sequential learning for short-term traffic flow forecasting
-
Chen, H., and Grant-Muller, S. (2001). "Use of sequential learning for short-term traffic flow forecasting." J. Transp. Res. Rec., C: Emerging Technol., 9(5), 319-336.
-
(2001)
J. Transp. Res. Rec., C: Emerging Technol.
, vol.9
, Issue.5
, pp. 319-336
-
-
Chen, H.1
Grant-Muller, S.2
-
6
-
-
47249085676
-
Ensemble learning approach for freeway short term traffic flow prediction
-
IEEE, New York
-
Chen, L., and Chen, C. (2007). "Ensemble learning approach for freeway short term traffic flow prediction." Proc., IEEE Int. Conf. on System of Systems Engineering, IEEE, New York, 1-6.
-
(2007)
Proc., IEEE Int. Conf. on System of Systems Engineering
, pp. 1-6
-
-
Chen, L.1
Chen, C.2
-
7
-
-
47249127654
-
Covariancem selection for non-chordal graphs via chordal embedding
-
Dahl, J., Vandenberghe, L., and Roychowdhury, V. (2008). "Covariancem selection for non-chordal graphs via chordal embedding." Optim. Met, 23(4), 501-520.
-
(2008)
Optim. Met
, vol.23
, Issue.4
, pp. 501-520
-
-
Dahl, J.1
Vandenberghe, L.2
Roychowdhury, V.3
-
8
-
-
0001866974
-
Adaptive forecasting of freeway traffic congestion
-
Transportation Research Board, Washington, DC
-
Davis, G. (1990). "Adaptive forecasting of freeway traffic congestion." Transportation Research Record 1287, Transportation Research Board, Washington, DC, 29-33.
-
(1990)
Transportation Research Record 1287
, pp. 29-33
-
-
Davis, G.1
-
9
-
-
0026128928
-
Non-parametric regression and shortterm freeway traffic forecasting
-
Davis, G., and Nihan, N. (1991). "Non-parametric regression and shortterm freeway traffic forecasting." J. Transp. Eng., 117(2), 178-188.
-
(1991)
J. Transp. Eng.
, vol.117
, Issue.2
, pp. 178-188
-
-
Davis, G.1
Nihan, N.2
-
10
-
-
0003922190
-
-
Wiley, New York
-
Duda, R., Hart, P., and Stork, D. (2001). Pattern classification, Wiley, New York.
-
(2001)
Pattern classification
-
-
Duda, R.1
Hart, P.2
Stork, D.3
-
11
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman, J., Hastie, T., and Tibshirani, R. (2007). "Sparse inverse covariance estimation with the graphical lasso." Biostatistics, 9(3), 432-441.
-
(2007)
Biostatistics
, vol.9
, Issue.3
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
78149346035
-
Multi-link traffic flow forecasting using neural networks
-
IEEE, New York
-
Gao, Y., and Sun, S. (2010). "Multi-link traffic flow forecasting using neural networks." Proc., 6th Int. Conf. on Natural Computation, IEEE, New York, 398-401.
-
(2010)
Proc., 6th Int. Conf. on Natural Computation
, pp. 398-401
-
-
Gao, Y.1
Sun, S.2
-
13
-
-
79957865043
-
Network-scale traffic modeling and forecasting with graphical lasso
-
Springer-Verlag, Berlin Heidelberg
-
Gao, Y., Sun, S., and Shi, D. (2011). "Network-scale traffic modeling and forecasting with graphical lasso." Proc., 8th Int. Symp. on Neural Networks (ISNN), Springer-Verlag, Berlin Heidelberg, 151-158.
-
(2011)
Proc., 8th Int. Symp. on Neural Networks (ISNN)
, pp. 151-158
-
-
Gao, Y.1
Sun, S.2
Shi, D.3
-
14
-
-
84863114799
-
The limitations of artificial neural networks for traffic prediction
-
IEEE, New York
-
Hall, J., and Mars, P. (1998). "The limitations of artificial neural networks for traffic prediction." Proc., 3rd IEEE Symp. on Computers and Communications, IEEE, New York, 8-12.
-
(1998)
Proc., 3rd IEEE Symp. on Computers and Communications
, pp. 8-12
-
-
Hall, J.1
Mars, P.2
-
15
-
-
4043129651
-
Graphical models
-
Jordan, M. (2004). "Graphical models." Stat. Sci., 19(1), 140-155.
-
(2004)
Stat. Sci.
, vol.19
, Issue.1
, pp. 140-155
-
-
Jordan, M.1
-
16
-
-
56349158799
-
Neural network multitask learning for traffic flow forecasting
-
IEEE, New York
-
Jin, F., and Sun, S. (2008). "Neural network multitask learning for traffic flow forecasting." Proc., Int. Joint Conf. on Neural Networks (IJCNN), IEEE, New York, 1898-1902.
-
(2008)
Proc., Int. Joint Conf. on Neural Networks (IJCNN)
, pp. 1898-1902
-
-
Jin, F.1
Sun, S.2
-
17
-
-
0033226152
-
Application of subsets autoregressive integrated moving average model for short-term freeway traffic volume forecasting
-
Transportation Research Board, Washington, DC
-
Lee, S., and Fambro, D. (1999). "Application of subsets autoregressive integrated moving average model for short-term freeway traffic volume forecasting." Transportation Research Record 1678, Transportation Research Board, Washington, DC, 179-188.
-
(1999)
Transportation Research Record 1678
, pp. 179-188
-
-
Lee, S.1
Fambro, D.2
-
18
-
-
33747163541
-
High dimensional graphs and variable selection with the lasso
-
Meinshausen, N., and Bühlmann, P. (2006). "High dimensional graphs and variable selection with the lasso." Ann. Stat., 34(3), 1436-1462.
-
(2006)
Ann. Stat.
, vol.34
, Issue.3
, pp. 1436-1462
-
-
Meinshausen, N.1
Bühlmann, P.2
-
19
-
-
0002324802
-
Short term traffic forecasting using time series methods
-
Moorthy, C., and Ratcliffe, B. (1988). "Short term traffic forecasting using time series methods." J. Transp. Plann. Technol., 12(1), 45-56.
-
(1988)
J. Transp. Plann. Technol.
, vol.12
, Issue.1
, pp. 45-56
-
-
Moorthy, C.1
Ratcliffe, B.2
-
20
-
-
0021375695
-
Dynamic prediction of traffic volume through kalman filter theory
-
Okutani, I., and Stephanedes, Y. (1984). "Dynamic prediction of traffic volume through kalman filter theory." Transp. Res., 18(1), 1-11.
-
(1984)
Transp. Res.
, vol.18
, Issue.1
, pp. 1-11
-
-
Okutani, I.1
Stephanedes, Y.2
-
21
-
-
0003023581
-
Short-term freeway traffic volume forecasting using radial basis function neural network
-
Transportation Research Board, Washington, DC
-
Park, B., Messer, C., and Urbanik, T., II (1998). "Short-term freeway traffic volume forecasting using radial basis function neural network." Transportation Research Record 1651, Transportation Research Board, Washington, DC, 39-47.
-
(1998)
Transportation Research Record 1651
, pp. 39-47
-
-
Park, B.1
Messer, C.2
Urbanik, T.I.I.3
-
22
-
-
25444448065
-
-
MIT Press, Cambridge, MA
-
Rasmussen, C., and Williams, K. (2006). Gaussian processes for machine learning, MIT Press, Cambridge, MA.
-
(2006)
Gaussian processes for machine learning
-
-
Rasmussen, C.1
Williams, K.2
-
23
-
-
0001891123
-
Short-term traffic flow prediction: Neural network approach
-
Transportation Research Board, Washington, DC
-
Smith, B., and Demetsky, M. (1994). "Short-term traffic flow prediction: Neural network approach." Transportation Research Record 1453, Transportation Research Board, Washington, DC, 98-104.
-
(1994)
Transportation Research Record 1453
, pp. 98-104
-
-
Smith, B.1
Demetsky, M.2
-
24
-
-
0031472064
-
Traffic flow forecasting: Comparison of modeling approaches
-
Smith, B., and Demetsky,M. (1997). "Traffic flow forecasting: Comparison of modeling approaches." J. Transp. Eng., 123(4), 261-266.
-
(1997)
J. Transp. Eng.
, vol.123
, Issue.4
, pp. 261-266
-
-
Smith, B.1
Demetsky, M.2
-
25
-
-
34249888176
-
The selective random subspace predictor for traffic flow forecasting
-
Sun, S., and Zhang, C. (2007). "The selective random subspace predictor for traffic flow forecasting." IEEE Trans. Intell. Transp. Syst., 8(2), 367-373.
-
(2007)
IEEE Trans. Intell. Transp. Syst.
, vol.8
, Issue.2
, pp. 367-373
-
-
Sun, S.1
Zhang, C.2
-
26
-
-
0028593761
-
Multi-recurrent networks for traffic forecasting
-
AAAI Press, California
-
Ulbricht, C. (1994). "Multi-recurrent networks for traffic forecasting." Proc., 12th National Conf. on Artificial Intelligence, AAAI Press, California, Vol. 1, 883-888.
-
(1994)
Proc., 12th National Conf. on Artificial Intelligence
, vol.1
, pp. 883-888
-
-
Ulbricht, C.1
-
27
-
-
10644246555
-
A radial basis function neural network approach to traffic flow forecasting
-
IEEE, New York
-
Wang, X., and Xiao, J. (2003). "A radial basis function neural network approach to traffic flow forecasting." Proc., IEEE Intelligent Transportation Systems, IEEE, New York, Vol. 1, 614-617.
-
(2003)
Proc., IEEE Intelligent Transportation Systems
, vol.1
, pp. 614-617
-
-
Wang, X.1
Xiao, J.2
-
28
-
-
0344944192
-
Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process
-
William, B., and Hoel, L. (2003). "Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process." J. Transp. Eng., 129(6), 664-672.
-
(2003)
J. Transp. Eng.
, vol.129
, Issue.6
, pp. 664-672
-
-
William, B.1
Hoel, L.2
-
29
-
-
84908258002
-
Short-term traffic flow forecasting based on markov chain model
-
IEEE, New York
-
Yu, G., Hu, J., Zhang, C., Zhuang, L., and Song, J. (2003). "Short-term traffic flow forecasting based on markov chain model." Proc., IEEE Intelligent Vehicles Symp., IEEE, New York, 208-212.
-
(2003)
Proc., IEEE Intelligent Vehicles Symp
, pp. 208-212
-
-
Yu, G.1
Hu, J.2
Zhang, C.3
Zhuang, L.4
Song, J.5
-
30
-
-
78650197593
-
Multiple-view multiple-learner active learning
-
Zhang, Q., and Sun, Q. (2010). "Multiple-view multiple-learner active learning." Pattern Recognit., 43(9), 3113-3119.
-
(2010)
Pattern Recognit
, vol.43
, Issue.9
, pp. 3113-3119
-
-
Zhang, Q.1
Sun, Q.2
|