메뉴 건너뛰기




Volumn 138, Issue 11, 2012, Pages 1358-1367

Network-scale traffic modeling and forecasting with graphical lasso and neural networks

Author keywords

Gaussian process regression (GPR); Graphical lasso (GL); Neural network (NN); Traffic flow forecasting

Indexed keywords

COVARIANCE MATRIX; GAUSSIAN DISTRIBUTION; GAUSSIAN NOISE (ELECTRONIC); INTELLIGENT SYSTEMS; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; INVERSE PROBLEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; POLLUTION CONTROL; REGRESSION ANALYSIS;

EID: 84880387876     PISSN: 0733947X     EISSN: None     Source Type: Journal    
DOI: 10.1061/(ASCE)TE.1943-5436.0000435     Document Type: Article
Times cited : (107)

References (30)
  • 1
    • 4444266556 scopus 로고    scopus 로고
    • Short term freeway flow prediction using genetically-optimized time-delay based neural networks
    • California PATH Program, Univ. of California, Berkeley, CA
    • Abdulhai, B., Porwal, H., and Recher, W. (1999). "Short term freeway flow prediction using genetically-optimized time-delay based neural networks." Proc., 78th Annual Meeting of the Transportation Research Board, California PATH Program, Univ. of California, Berkeley, CA.
    • (1999) Proc., 78th Annual Meeting of the Transportation Research Board
    • Abdulhai, B.1    Porwal, H.2    Recher, W.3
  • 2
    • 12244292245 scopus 로고    scopus 로고
    • Short-term traffic flow prediction using neuro-genetic algorithms
    • Abdulhai, B., Porwal, H., and Recher, W. (2002). "Short-term traffic flow prediction using neuro-genetic algorithms." J. Intell. Transp. Syst., 7(1), 3-41.
    • (2002) J. Intell. Transp. Syst. , vol.7 , Issue.1 , pp. 3-41
    • Abdulhai, B.1    Porwal, H.2    Recher, W.3
  • 3
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee, O., Ghaoui, L., and Aspremont, A. (2008). "Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data." J. Mach. Learn. Res., 9, 485-516.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.2    Aspremont, A.3
  • 4
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R. (1997). "Multitask learning." Mach. Learn., 28(1), 41-75.
    • (1997) Mach. Learn. , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 5
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen, H., and Grant-Muller, S. (2001). "Use of sequential learning for short-term traffic flow forecasting." J. Transp. Res. Rec., C: Emerging Technol., 9(5), 319-336.
    • (2001) J. Transp. Res. Rec., C: Emerging Technol. , vol.9 , Issue.5 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 6
    • 47249085676 scopus 로고    scopus 로고
    • Ensemble learning approach for freeway short term traffic flow prediction
    • IEEE, New York
    • Chen, L., and Chen, C. (2007). "Ensemble learning approach for freeway short term traffic flow prediction." Proc., IEEE Int. Conf. on System of Systems Engineering, IEEE, New York, 1-6.
    • (2007) Proc., IEEE Int. Conf. on System of Systems Engineering , pp. 1-6
    • Chen, L.1    Chen, C.2
  • 7
    • 47249127654 scopus 로고    scopus 로고
    • Covariancem selection for non-chordal graphs via chordal embedding
    • Dahl, J., Vandenberghe, L., and Roychowdhury, V. (2008). "Covariancem selection for non-chordal graphs via chordal embedding." Optim. Met, 23(4), 501-520.
    • (2008) Optim. Met , vol.23 , Issue.4 , pp. 501-520
    • Dahl, J.1    Vandenberghe, L.2    Roychowdhury, V.3
  • 8
    • 0001866974 scopus 로고
    • Adaptive forecasting of freeway traffic congestion
    • Transportation Research Board, Washington, DC
    • Davis, G. (1990). "Adaptive forecasting of freeway traffic congestion." Transportation Research Record 1287, Transportation Research Board, Washington, DC, 29-33.
    • (1990) Transportation Research Record 1287 , pp. 29-33
    • Davis, G.1
  • 9
    • 0026128928 scopus 로고
    • Non-parametric regression and shortterm freeway traffic forecasting
    • Davis, G., and Nihan, N. (1991). "Non-parametric regression and shortterm freeway traffic forecasting." J. Transp. Eng., 117(2), 178-188.
    • (1991) J. Transp. Eng. , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.1    Nihan, N.2
  • 11
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T., and Tibshirani, R. (2007). "Sparse inverse covariance estimation with the graphical lasso." Biostatistics, 9(3), 432-441.
    • (2007) Biostatistics , vol.9 , Issue.3 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 78149346035 scopus 로고    scopus 로고
    • Multi-link traffic flow forecasting using neural networks
    • IEEE, New York
    • Gao, Y., and Sun, S. (2010). "Multi-link traffic flow forecasting using neural networks." Proc., 6th Int. Conf. on Natural Computation, IEEE, New York, 398-401.
    • (2010) Proc., 6th Int. Conf. on Natural Computation , pp. 398-401
    • Gao, Y.1    Sun, S.2
  • 13
    • 79957865043 scopus 로고    scopus 로고
    • Network-scale traffic modeling and forecasting with graphical lasso
    • Springer-Verlag, Berlin Heidelberg
    • Gao, Y., Sun, S., and Shi, D. (2011). "Network-scale traffic modeling and forecasting with graphical lasso." Proc., 8th Int. Symp. on Neural Networks (ISNN), Springer-Verlag, Berlin Heidelberg, 151-158.
    • (2011) Proc., 8th Int. Symp. on Neural Networks (ISNN) , pp. 151-158
    • Gao, Y.1    Sun, S.2    Shi, D.3
  • 14
    • 84863114799 scopus 로고    scopus 로고
    • The limitations of artificial neural networks for traffic prediction
    • IEEE, New York
    • Hall, J., and Mars, P. (1998). "The limitations of artificial neural networks for traffic prediction." Proc., 3rd IEEE Symp. on Computers and Communications, IEEE, New York, 8-12.
    • (1998) Proc., 3rd IEEE Symp. on Computers and Communications , pp. 8-12
    • Hall, J.1    Mars, P.2
  • 15
    • 4043129651 scopus 로고    scopus 로고
    • Graphical models
    • Jordan, M. (2004). "Graphical models." Stat. Sci., 19(1), 140-155.
    • (2004) Stat. Sci. , vol.19 , Issue.1 , pp. 140-155
    • Jordan, M.1
  • 16
    • 56349158799 scopus 로고    scopus 로고
    • Neural network multitask learning for traffic flow forecasting
    • IEEE, New York
    • Jin, F., and Sun, S. (2008). "Neural network multitask learning for traffic flow forecasting." Proc., Int. Joint Conf. on Neural Networks (IJCNN), IEEE, New York, 1898-1902.
    • (2008) Proc., Int. Joint Conf. on Neural Networks (IJCNN) , pp. 1898-1902
    • Jin, F.1    Sun, S.2
  • 17
    • 0033226152 scopus 로고    scopus 로고
    • Application of subsets autoregressive integrated moving average model for short-term freeway traffic volume forecasting
    • Transportation Research Board, Washington, DC
    • Lee, S., and Fambro, D. (1999). "Application of subsets autoregressive integrated moving average model for short-term freeway traffic volume forecasting." Transportation Research Record 1678, Transportation Research Board, Washington, DC, 179-188.
    • (1999) Transportation Research Record 1678 , pp. 179-188
    • Lee, S.1    Fambro, D.2
  • 18
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • Meinshausen, N., and Bühlmann, P. (2006). "High dimensional graphs and variable selection with the lasso." Ann. Stat., 34(3), 1436-1462.
    • (2006) Ann. Stat. , vol.34 , Issue.3 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 19
    • 0002324802 scopus 로고
    • Short term traffic forecasting using time series methods
    • Moorthy, C., and Ratcliffe, B. (1988). "Short term traffic forecasting using time series methods." J. Transp. Plann. Technol., 12(1), 45-56.
    • (1988) J. Transp. Plann. Technol. , vol.12 , Issue.1 , pp. 45-56
    • Moorthy, C.1    Ratcliffe, B.2
  • 20
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through kalman filter theory
    • Okutani, I., and Stephanedes, Y. (1984). "Dynamic prediction of traffic volume through kalman filter theory." Transp. Res., 18(1), 1-11.
    • (1984) Transp. Res. , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.2
  • 21
    • 0003023581 scopus 로고    scopus 로고
    • Short-term freeway traffic volume forecasting using radial basis function neural network
    • Transportation Research Board, Washington, DC
    • Park, B., Messer, C., and Urbanik, T., II (1998). "Short-term freeway traffic volume forecasting using radial basis function neural network." Transportation Research Record 1651, Transportation Research Board, Washington, DC, 39-47.
    • (1998) Transportation Research Record 1651 , pp. 39-47
    • Park, B.1    Messer, C.2    Urbanik, T.I.I.3
  • 23
    • 0001891123 scopus 로고
    • Short-term traffic flow prediction: Neural network approach
    • Transportation Research Board, Washington, DC
    • Smith, B., and Demetsky, M. (1994). "Short-term traffic flow prediction: Neural network approach." Transportation Research Record 1453, Transportation Research Board, Washington, DC, 98-104.
    • (1994) Transportation Research Record 1453 , pp. 98-104
    • Smith, B.1    Demetsky, M.2
  • 24
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modeling approaches
    • Smith, B., and Demetsky,M. (1997). "Traffic flow forecasting: Comparison of modeling approaches." J. Transp. Eng., 123(4), 261-266.
    • (1997) J. Transp. Eng. , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.1    Demetsky, M.2
  • 25
    • 34249888176 scopus 로고    scopus 로고
    • The selective random subspace predictor for traffic flow forecasting
    • Sun, S., and Zhang, C. (2007). "The selective random subspace predictor for traffic flow forecasting." IEEE Trans. Intell. Transp. Syst., 8(2), 367-373.
    • (2007) IEEE Trans. Intell. Transp. Syst. , vol.8 , Issue.2 , pp. 367-373
    • Sun, S.1    Zhang, C.2
  • 26
    • 0028593761 scopus 로고
    • Multi-recurrent networks for traffic forecasting
    • AAAI Press, California
    • Ulbricht, C. (1994). "Multi-recurrent networks for traffic forecasting." Proc., 12th National Conf. on Artificial Intelligence, AAAI Press, California, Vol. 1, 883-888.
    • (1994) Proc., 12th National Conf. on Artificial Intelligence , vol.1 , pp. 883-888
    • Ulbricht, C.1
  • 27
    • 10644246555 scopus 로고    scopus 로고
    • A radial basis function neural network approach to traffic flow forecasting
    • IEEE, New York
    • Wang, X., and Xiao, J. (2003). "A radial basis function neural network approach to traffic flow forecasting." Proc., IEEE Intelligent Transportation Systems, IEEE, New York, Vol. 1, 614-617.
    • (2003) Proc., IEEE Intelligent Transportation Systems , vol.1 , pp. 614-617
    • Wang, X.1    Xiao, J.2
  • 28
    • 0344944192 scopus 로고    scopus 로고
    • Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process
    • William, B., and Hoel, L. (2003). "Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process." J. Transp. Eng., 129(6), 664-672.
    • (2003) J. Transp. Eng. , vol.129 , Issue.6 , pp. 664-672
    • William, B.1    Hoel, L.2
  • 29
    • 84908258002 scopus 로고    scopus 로고
    • Short-term traffic flow forecasting based on markov chain model
    • IEEE, New York
    • Yu, G., Hu, J., Zhang, C., Zhuang, L., and Song, J. (2003). "Short-term traffic flow forecasting based on markov chain model." Proc., IEEE Intelligent Vehicles Symp., IEEE, New York, 208-212.
    • (2003) Proc., IEEE Intelligent Vehicles Symp , pp. 208-212
    • Yu, G.1    Hu, J.2    Zhang, C.3    Zhuang, L.4    Song, J.5
  • 30
    • 78650197593 scopus 로고    scopus 로고
    • Multiple-view multiple-learner active learning
    • Zhang, Q., and Sun, Q. (2010). "Multiple-view multiple-learner active learning." Pattern Recognit., 43(9), 3113-3119.
    • (2010) Pattern Recognit , vol.43 , Issue.9 , pp. 3113-3119
    • Zhang, Q.1    Sun, Q.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.