메뉴 건너뛰기




Volumn 19, Issue 12, 2011, Pages 1479-1489

Dynamic traffic prediction for insufficient data roadways via automatic control theories

Author keywords

Automatic control theory; Dynamic section flow estimation; Insufficient data source; Observer design; Traffic prediction

Indexed keywords

DATA SOURCE; DYNAMIC SECTION; DYNAMIC TRAFFIC; FEASIBLE ALGORITHMS; FLOW PREDICTION; METROPOLITAN AREA; NUMERICAL EVALUATIONS; OBSERVER DESIGN; TRAFFIC DATA COLLECTION; TRAFFIC DETECTORS; TRAFFIC ESTIMATION; TRAFFIC PREDICTION; VEHICLE DETECTOR;

EID: 80054839021     PISSN: 09670661     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.conengprac.2011.08.007     Document Type: Article
Times cited : (11)

References (51)
  • 2
    • 0004251784 scopus 로고
    • Prentice Hall, Englewood Cliffs, NJ
    • Brogan W.L. Modern control theory 1991, Prentice Hall, Englewood Cliffs, NJ. 3rd ed.
    • (1991) Modern control theory
    • Brogan, W.L.1
  • 3
    • 0342323736 scopus 로고    scopus 로고
    • Real-time prediction of traffic flows using dynamic generalized linear models
    • Chang J.L., Miaou S.P. Real-time prediction of traffic flows using dynamic generalized linear models. Transportation Research Record 1999, 1678:168-178.
    • (1999) Transportation Research Record , vol.1678 , pp. 168-178
    • Chang, J.L.1    Miaou, S.P.2
  • 4
    • 0035480351 scopus 로고    scopus 로고
    • Use of sequential learning for short-term traffic flow forecasting
    • Chen H., Grant-Muller S. Use of sequential learning for short-term traffic flow forecasting. Transportation Research Part C 2001, 9:319-336.
    • (2001) Transportation Research Part C , vol.9 , pp. 319-336
    • Chen, H.1    Grant-Muller, S.2
  • 5
    • 0029333557 scopus 로고
    • Estimating intersection turning movement proportions from less-than-complete sets of traffic counts
    • Davis G.A., Lan C.-J. Estimating intersection turning movement proportions from less-than-complete sets of traffic counts. Transportation Research Record 1994, 1510:53-59.
    • (1994) Transportation Research Record , vol.1510 , pp. 53-59
    • Davis, G.A.1    Lan, C.-J.2
  • 6
    • 0026128928 scopus 로고
    • Nonparametric regression and short-term freeway traffic forecasting
    • Davis G.A., Nihan N.L. Nonparametric regression and short-term freeway traffic forecasting. Journal of Transportation Engineering 1991, 117(2):178-188.
    • (1991) Journal of Transportation Engineering , vol.117 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 9
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • Dia H. An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operational Research 2001, 131:253-261.
    • (2001) European Journal of Operational Research , vol.131 , pp. 253-261
    • Dia, H.1
  • 10
    • 0034442864 scopus 로고    scopus 로고
    • Estimation of time-dependent, stochastic route travel times using artificial neural networks
    • Fu L., Rilett L.R. Estimation of time-dependent, stochastic route travel times using artificial neural networks. Transportation Planning and Technology 2000, 24(1):25-36.
    • (2000) Transportation Planning and Technology , vol.24 , Issue.1 , pp. 25-36
    • Fu, L.1    Rilett, L.R.2
  • 14
    • 3242676259 scopus 로고    scopus 로고
    • Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings
    • Ishak S., Alecsandru C. Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings. Journal of Transportation Engineering 2004, 130(4):452-465.
    • (2004) Journal of Transportation Engineering , vol.130 , Issue.4 , pp. 452-465
    • Ishak, S.1    Alecsandru, C.2
  • 16
    • 67349277727 scopus 로고    scopus 로고
    • Memory properties and fractional integration in transportation time-series
    • Karlaftis M.G., Vlahogianni E.I. Memory properties and fractional integration in transportation time-series. Transportation Research Part C 2009, 17:444-453.
    • (2009) Transportation Research Part C , vol.17 , pp. 444-453
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 19
    • 0034774205 scopus 로고    scopus 로고
    • Adaptive turning flow estimation based on incomplete detector information for advanced traffic management. In Proceedings of the IEEE Intelligent Transportation Systems Conference, Oakland, California, USA, August 25-29.
    • Lan, C.-J. (2001) Adaptive turning flow estimation based on incomplete detector information for advanced traffic management. In Proceedings of the IEEE Intelligent Transportation Systems Conference, Oakland, California, USA, August 25-29.
    • (2001)
    • Lan, C.-J.1
  • 20
    • 0033367089 scopus 로고    scopus 로고
    • Real-time estimation of turning movement proportions from partial counts on urban networks
    • Lan C.-J., Davis G.A. Real-time estimation of turning movement proportions from partial counts on urban networks. Transportation Research Part C 1999, 7:305-327.
    • (1999) Transportation Research Part C , vol.7 , pp. 305-327
    • Lan, C.-J.1    Davis, G.A.2
  • 21
    • 0033226152 scopus 로고    scopus 로고
    • Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting
    • Lee S., Fambro D.B. Application of subset autoregressive integrated moving average model for short-term freeway traffic volume forecasting. Transportation Research Record 1999, 1678:179-188.
    • (1999) Transportation Research Record , vol.1678 , pp. 179-188
    • Lee, S.1    Fambro, D.B.2
  • 25
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through Kalman filtering theory
    • Okutani I., Stephanedes Y.J. Dynamic prediction of traffic volume through Kalman filtering theory. Transportation Research part B 1984, 18(1):1-11.
    • (1984) Transportation Research part B , vol.18 , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 26
    • 0032779078 scopus 로고    scopus 로고
    • Spectral basis neural networks for real-time travel time forecasting
    • Park D., Rilett L.R., Han G. Spectral basis neural networks for real-time travel time forecasting. Journal of Transportation Engineering 1999, 125(6):515-523.
    • (1999) Journal of Transportation Engineering , vol.125 , Issue.6 , pp. 515-523
    • Park, D.1    Rilett, L.R.2    Han, G.3
  • 27
    • 0028748362 scopus 로고
    • Estimation of speeds from single-loop freeway flow and occupancy data using cusp catastrophe theory
    • Pushkar A., Hall F.L., Acha-Daza J.A. Estimation of speeds from single-loop freeway flow and occupancy data using cusp catastrophe theory. Transportation Research Record 1995, 1457:149-157.
    • (1995) Transportation Research Record , vol.1457 , pp. 149-157
    • Pushkar, A.1    Hall, F.L.2    Acha-Daza, J.A.3
  • 29
    • 0001805729 scopus 로고
    • Exponential filtering of traffic data
    • Ross P. Exponential filtering of traffic data. Transportation Research Record 1982, 869:43-49.
    • (1982) Transportation Research Record , vol.869 , pp. 43-49
    • Ross, P.1
  • 30
    • 0001891123 scopus 로고
    • Short-term traffic flow prediction: Neural network approach
    • Smith B.L., Demetsky M.J. Short-term traffic flow prediction: Neural network approach. Transportation Research Record 1994, 1453:98-104.
    • (1994) Transportation Research Record , vol.1453 , pp. 98-104
    • Smith, B.L.1    Demetsky, M.J.2
  • 31
    • 0034774035 scopus 로고    scopus 로고
    • Spectral and cross-spectral analysis of urban traffic flows. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems. Oakland, California, August 25-29.
    • Stathopoulos, A., & Karlaftis, M.G. (2001). Spectral and cross-spectral analysis of urban traffic flows. In Proceedings of the IEEE International Conference on Intelligent Transportation Systems. Oakland, California, August 25-29.
    • (2001)
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 32
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state space approach for urban traffic flow modeling and prediction
    • Stathopoulos A., Karlaftis M.G. A multivariate state space approach for urban traffic flow modeling and prediction. Transportation Research Part C 2003, 11:121-135.
    • (2003) Transportation Research Part C , vol.11 , pp. 121-135
    • Stathopoulos, A.1    Karlaftis, M.G.2
  • 36
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time series models to forecast traffic flow
    • Van Der Voort M., Dougherty M., Watson S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow. Transportation Research Part C 1996, 4(5):307-318.
    • (1996) Transportation Research Part C , vol.4 , Issue.5 , pp. 307-318
    • Van Der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 37
    • 0036974476 scopus 로고    scopus 로고
    • Freeway travel time prediction with state-space neural networks-Modeling state-space dynamics with recurrent neural networks
    • Van Lint J.W.C., Hoogendoorn S.P., van Zuylen H.J. Freeway travel time prediction with state-space neural networks-Modeling state-space dynamics with recurrent neural networks. Transportation Research Record 2002, 1811:30-39.
    • (2002) Transportation Research Record , vol.1811 , pp. 30-39
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    van Zuylen, H.J.3
  • 38
    • 33646762818 scopus 로고    scopus 로고
    • Accurate freeway travel time prediction with state-space neural networks under missing data
    • Van Lint J.W.C., Hoogendoorn S.P., van Zuylen H.J. Accurate freeway travel time prediction with state-space neural networks under missing data. Transportation Research Part C 2005, 13:347-369.
    • (2005) Transportation Research Part C , vol.13 , pp. 347-369
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    van Zuylen, H.J.3
  • 40
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach. Transportation Research Part C 2005, 13:211-234.
    • (2005) Transportation Research Part C , vol.13 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 43
    • 11144262651 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extended Kalman filter: a general approach
    • Wang Y., Papageorgious M. Real-time freeway traffic state estimation based on extended Kalman filter: a general approach. Transportation Research Part B 2005, 39:141-167.
    • (2005) Transportation Research Part B , vol.39 , pp. 141-167
    • Wang, Y.1    Papageorgious, M.2
  • 44
    • 33748429561 scopus 로고    scopus 로고
    • RENAISSANCE-A unified macroscopic model-based approach to real-time freeway network traffic surveillance
    • Wang Y., Papageorgious M., Messmer A. RENAISSANCE-A unified macroscopic model-based approach to real-time freeway network traffic surveillance. Transportation Research Part C 2006, 14:190-212.
    • (2006) Transportation Research Part C , vol.14 , pp. 190-212
    • Wang, Y.1    Papageorgious, M.2    Messmer, A.3
  • 45
    • 36849003408 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extended Kalman filter: A case study
    • Wang Y., Papageorgious M., Messmer A. Real-time freeway traffic state estimation based on extended Kalman filter: A case study. Transportation Science 2007, 41:168-181.
    • (2007) Transportation Science , vol.41 , pp. 168-181
    • Wang, Y.1    Papageorgious, M.2    Messmer, A.3
  • 46
    • 54049147670 scopus 로고    scopus 로고
    • Real-time freeway traffic state estimation based on extended Kalman filter: Adaptive capabilities and real data testing
    • Wang Y., Papageorgious M., Messmer A. Real-time freeway traffic state estimation based on extended Kalman filter: Adaptive capabilities and real data testing. Transportation Research Part A 2008, 42:1340-1358.
    • (2008) Transportation Research Part A , vol.42 , pp. 1340-1358
    • Wang, Y.1    Papageorgious, M.2    Messmer, A.3
  • 49
    • 0033244190 scopus 로고    scopus 로고
    • Prediction of road traffic using a neural network approach
    • Yasdi R. Prediction of road traffic using a neural network approach. Neural Computing and Applications 1999, 8:135-142.
    • (1999) Neural Computing and Applications , vol.8 , pp. 135-142
    • Yasdi, R.1
  • 50
    • 0001477735 scopus 로고    scopus 로고
    • Macroscopic modeling of freeway traffic using an artificial neural network
    • Zhang H., Ritchie S.G., Lo Z.P. Macroscopic modeling of freeway traffic using an artificial neural network. Transportation Research Record 2000, 1588:110-119.
    • (2000) Transportation Research Record , vol.1588 , pp. 110-119
    • Zhang, H.1    Ritchie, S.G.2    Lo, Z.P.3
  • 51
    • 0034327468 scopus 로고    scopus 로고
    • Recursive prediction of traffic conditions with neural network models
    • Zhang H.M. Recursive prediction of traffic conditions with neural network models. Journal of Transportation Engineering 2000, 126(6):472-481.
    • (2000) Journal of Transportation Engineering , vol.126 , Issue.6 , pp. 472-481
    • Zhang, H.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.