메뉴 건너뛰기




Volumn 13, Issue 2, 2012, Pages 644-654

Neural-network-based models for short-term traffic flow forecasting using a hybrid exponential smoothing and levenberg-marquardt algorithm

Author keywords

Exponential smoothing method; LevenbergMarquardt (LM) algorithm; neural networks (NNs); short term traffic flow forecasting

Indexed keywords

EXPONENTIAL SMOOTHING; EXPONENTIAL SMOOTHING METHOD; GENERALIZATION CAPABILITY; LEVENBERG-MARQUARDT ALGORITHM; LM ALGORITHM; NOVEL NEURAL NETWORK; PREPROCESS; SHORT-TERM TRAFFIC FLOW; SHORT-TERM TRAFFIC FLOW FORECASTING; TRAFFIC FLOW; TRAINING METHODS; WESTERN AUSTRALIA;

EID: 84861893114     PISSN: 15249050     EISSN: None     Source Type: Journal    
DOI: 10.1109/TITS.2011.2174051     Document Type: Article
Times cited : (417)

References (59)
  • 1
    • 0033355286 scopus 로고    scopus 로고
    • Design ualityand robustness with neural networks
    • Nov
    • I. G. Aliand Y. T. Chen, "Designualityand robustness with neural networks," IEEE Trans. Neural Netw., vol. 10, no. 6, pp. 1518-1527, Nov. 1999.
    • (1999) IEEE Trans. Neural Netw , vol.10 , Issue.6 , pp. 1518-1527
    • Ali, I.G.1    Chen, Y.T.2
  • 3
    • 0031093652 scopus 로고    scopus 로고
    • Recent advances and applications in the field of short-term traffic forecasting
    • PII S0169207096006954
    • V. B. Arem, H. R. Kirby, M. J. M. Van Der Vlist,and J. C. Whittaker, "Recentadvancesandapplications in the field of short-term traffic forecasting," Int. J. Forecasting, vol. 13, no. 1, pp. 1-12, Mar. 1997. (Pubitemid 127165539)
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 1-12
    • Van Arem, B.1    Kirby, H.R.2    Van Der Vlist, M.J.M.3    Whittaker, J.C.4
  • 4
    • 0001097933 scopus 로고
    • The fundamental theorem of exponential smoothing
    • Sep./Oct
    • R. G. Brownand R. F. Meyer, "The fundamental theorem of exponential smoothing," Oper. Res., vol. 9, no. 5, pp. 673-685, Sep./Oct. 1961.
    • (1961) Oper. Res , vol.9 , Issue.5 , pp. 673-685
    • Brown, R.G.1    Meyer, R.F.2
  • 5
    • 58349104545 scopus 로고    scopus 로고
    • Online-SVR for short-term traffic flow prediction under typicalandatypical traffic conditions
    • Apr
    • M. Castro-Neto, Y. S. Jeong, M. K. Jeong,and L. D. Han, "Online-SVR for short-term traffic flow prediction under typicalandatypical traffic conditions," Expert Syst. Appl., vol. 36, no. 3, pp. 6164-6173, Apr. 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.3 , pp. 6164-6173
    • Castro-Neto, M.1    Jeong, Y.S.2    Jeong, M.K.3    Han, L.D.4
  • 6
    • 33748174101 scopus 로고    scopus 로고
    • The development ofa weighted evolving fuzzy neural network for PCB sales forecasting
    • P. C. Chang, Y. W. Wang,and C. H. Liu, "The development ofa weighted evolving fuzzy neural network for PCB sales forecasting," Expert Syst. Appl., vol. 32, no. 1, pp. 86-96, 2007.
    • (2007) Expert Syst. Appl , vol.32 , Issue.1 , pp. 86-96
    • Chang, P.C.1    Wang, Y.W.2    Liu, C.H.3
  • 8
    • 35348858027 scopus 로고    scopus 로고
    • Forecasting Thailand's rice export: Statistical techniques vs. artificial neural networks
    • DOI 10.1016/j.cie.2007.06.005, PII S0360835207000952
    • H. C. Coand R. Boosarawongse, "Forecasting Thailand's rice export: Statistical techniues vs.artificial neural networks," Comput. Ind. Eng., vol. 53, no. 4, pp. 610-627, Nov. 2007. (Pubitemid 47588647)
    • (2007) Computers and Industrial Engineering , vol.53 , Issue.4 , pp. 610-627
    • Co, H.C.1    Boosarawongse, R.2
  • 9
    • 0025482241 scopus 로고
    • Wavelet transform, time-frequency localization and signal analysis
    • DOI 10.1109/18.57199
    • I. Daubechies, "The wavelet transform, time-freuency localizationand signalanalysis," IEEE Trans. Inf. Theory, vol. 36, no. 5, pp. 961-1005, Sep. 1990. (Pubitemid 20738359)
    • (1990) IEEE Transactions on Information Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies Ingrid1
  • 10
    • 0026128928 scopus 로고
    • Nonparametric regressionand short-term freeway traffic forecasting
    • Apr
    • G. A. Davisand N. L. Nihan, "Nonparametric regressionand short-term freeway traffic forecasting," J. Transp. Eng., vol. 177, no. 2, pp. 178-188, Apr. 1991.
    • (1991) J. Transp. Eng , vol.177 , Issue.2 , pp. 178-188
    • Davis, G.A.1    Nihan, N.L.2
  • 12
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • DOI 10.1016/S0377-2217(00)00125-9, PII S0377221700001259
    • H. Dia, "An object-oriented neural networkapproach to short-term traffic forecasting," Eur. J. Oper. Res., vol. 131, no. 2, pp. 253-261, Jun. 2001. (Pubitemid 32271741)
    • (2001) European Journal of Operational Research , vol.131 , Issue.2 , pp. 253-261
    • Dia, H.1
  • 13
    • 0026207670 scopus 로고
    • Short term load forecasting usinganadaptive neural network
    • T. S. Dillon, S. Sestito,and S. Leung, "Short term load forecasting usinganadaptive neural network," Elect. Power Energy Syst., vol. 13, no. 4, pp. 186-192, 1991.
    • (1991) Elect. Power Energy Syst , vol.13 , Issue.4 , pp. 186-192
    • Dillon, T.S.1    Sestito, S.2    Leung, S.3
  • 14
    • 0029485810 scopus 로고
    • A review of neural networksapplied to transport
    • M. Dougherty, "A review of neural networksapplied to transport," Transp. Res. Part C: Emerging Technol., vol. 3, no. 4, pp. 247-260, 1995.
    • (1995) Transp. Res. Part C: Emerging Technol , vol.3 , Issue.4 , pp. 247-260
    • Dougherty, M.1
  • 16
    • 0031092866 scopus 로고    scopus 로고
    • Short-term inter-urban traffic forecasts using neural networks
    • PII S0169207096006978
    • M. S. Doughertyand M. R. Cobbett, "Short-term inter-urban traffic forecasts using neural networks," Int. J. Forecasting, vol. 13, no. 1, pp. 21-31, Mar. 1997. (Pubitemid 127165541)
    • (1997) International Journal of Forecasting , vol.13 , Issue.1 , pp. 21-31
    • Dougherty, M.S.1    Cobbett, M.R.2
  • 17
    • 69249222740 scopus 로고    scopus 로고
    • Predicting the brazilian stock market through neural networksandadaptive exponential smoothing methods
    • Dec
    • E. L. Faria, M. P. Albuuerue, J. L. Gonzalez, J. T. P. Cavalcanta,and M. P. Albuuerue, "Predicting the Brazilian stock market through neural networksandadaptive exponential smoothing methods," Expert Syst. Appl., vol. 36, no. 10, pp. 12 506-12 509, Dec. 2009.
    • (2009) Expert Syst. Appl , vol.36 , Issue.10 , pp. 12506-12509
    • Faria, E.L.1    Albuuerue, M.P.2    Gonzalez, J.L.3    Cavalcanta, J.T.P.4    Albuuerue, M.P.5
  • 18
  • 19
    • 0034442864 scopus 로고    scopus 로고
    • Estimation of time-dependent, stochastic route travel times using artificial neural networks
    • L. Fuand L. R. Rilett, "Estimation of time-dependent, stochastic route travel times usingartificial neural networks," Transp. Planning Technol., vol. 24, no. 1, pp. 25-48, 2000. (Pubitemid 32477773)
    • (2000) Transportation Planning and Technology , vol.24 , Issue.1 , pp. 25-48
    • Fu, L.1    Rilett, L.R.2
  • 20
    • 11244305511 scopus 로고    scopus 로고
    • NARMAX time series model prediction: Feedforward and recurrent fuzzy neural network approaches
    • DOI 10.1016/j.fss.2004.09.015, PII S0165011404004099
    • Y. Gaoand M. J. Er, "NARMAX time series model prediction: Feedforwardand recurrent fuzzy neural networkapproaches," Fuzzy Sets Syst., vol. 150, no. 2, pp. 331-350, Mar. 2005. (Pubitemid 40056024)
    • (2005) Fuzzy Sets and Systems , vol.150 , Issue.2 , pp. 331-350
    • Gao, Y.1    Er, M.J.2
  • 22
    • 33745302028 scopus 로고    scopus 로고
    • Effect of monitoring system structure on short-term prediction of highway travel time
    • DOI 10.1080/03081060600753438, PII Q40234415766
    • S. Innamaa, "Effect of monitoring system structure on short-term prediction of highway travel time," Transp. Planning Technol., vol. 29, no. 2, pp. 125-140, Apr. 2006. (Pubitemid 43931956)
    • (2006) Transportation Planning and Technology , vol.29 , Issue.2 , pp. 125-140
    • Innamaa, S.1
  • 23
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • DOI 10.1061/(ASCE)0733-947X(2005)131:10(771)
    • X. Jiangand H. Adeli, "Dynamic wavelet neural network model for traffic flow forecasting," J. Transp. Eng., vol. 131, no. 10, pp. 771-779, Oct. 2005. (Pubitemid 41419813)
    • (2005) Journal of Transportation Engineering , vol.131 , Issue.10 , pp. 771-779
    • Jiang, X.1    Adeli, H.2
  • 24
    • 0742285809 scopus 로고    scopus 로고
    • Temporal problems solved by dynamic fuzzy network based on geneticalgorithm with variable-length chromosomes
    • Mar
    • C. F. Juang, "Temporal problems solved by dynamic fuzzy network based on geneticalgorithm with variable-length chromosomes," Fuzzy Sets Syst., vol. 142, no. 2, pp. 199-219, Mar. 2004.
    • (2004) Fuzzy Sets Syst , vol.142 , Issue.2 , pp. 199-219
    • Juang, C.F.1
  • 25
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • DOI 10.1109/91.995117, PII S106367060202965X
    • N. K. Kasabovand Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference systemand itsapplication for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002. (Pubitemid 34554860)
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 26
    • 0034271110 scopus 로고    scopus 로고
    • On overfitting, generalization,and randomly expanded training sets
    • Sep
    • G. N. Karystinosand D. A. Pados, "On overfitting, generalization,and randomly expanded training sets," IEEE Trans. Neural Netw., vol. 11, no. 5, pp. 1050-1057, Sep. 2000.
    • (2000) IEEE Trans. Neural Netw , vol.11 , Issue.5 , pp. 1050-1057
    • Karystinos, G.N.1    Pados, D.A.2
  • 27
    • 0003979410 scopus 로고    scopus 로고
    • What size neural network gives optimal generalization? Convergence properties of backpropagation
    • Studies, Univ. Maryland, College Park, MD, Tech. Rep., UMIACS-TR-96-22and CS-TR-3617, Jun
    • S. Lawrence, C. L. Giles,and A. C. Tsoi, "What size neural network gives optimal generalization? Convergence properties of backpropagation," Instrum. Adv. Comput. Studies, Univ. Maryland, College Park, MD, Tech. Rep., UMIACS-TR-96-22and CS-TR-3617, Jun. 1996.
    • (1996) Instrum. Adv. Comput
    • Lawrence, S.1    Giles, C.L.2    Tsoi, A.C.3
  • 28
    • 0031284302 scopus 로고    scopus 로고
    • An urban traffic flow model integrating neural network
    • Oct
    • C. Ledoux, "An urban traffic flow model integrating neural network," Transp. Res. Part C, Emerging Technol., vol. 5, no. 5, pp. 287-300, Oct. 1997.
    • (1997) Transp. Res. Part C, Emerging Technol , vol.5 , Issue.5 , pp. 287-300
    • Ledoux, C.1
  • 30
    • 15244355385 scopus 로고    scopus 로고
    • Bayesian neural networks for nonlinear time series forecasting
    • DOI 10.1007/s11222-005-4786-8
    • F. Liang, "Bayesian neural networks for nonlinear time series forecasting," Statist. Comput., vol. 15, no. 1, pp. 13-29, Jan. 2005. (Pubitemid 40389960)
    • (2005) Statistics and Computing , vol.15 , Issue.1 , pp. 13-29
    • Liang, F.1
  • 31
    • 49149099084 scopus 로고    scopus 로고
    • Optimizedapproximationalgorithm in neural networks without overfitting
    • Jun
    • Y. Liu, J. A. Starzyk,and Z. Zhu, "Optimizedapproximationalgorithm in neural networks without overfitting," IEEE Trans. Neural Netw., vol. 19, no. 6, pp. 983-995, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw , vol.19 , Issue.6 , pp. 983-995
    • Liu, Y.1    Starzyk, J.A.2    Zhu, Z.3
  • 32
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • May
    • D. MacKay, "A practical Bayesian framework for backpropagation networks," Neural Comput., vol. 4, no. 3, pp. 448-472, May 1992.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.1
  • 33
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • Jul
    • S. G. Mallat, "A theory for multiresolution signal decomposition: The wavelet representation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 674-693, Jul. 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 34
    • 0142216225 scopus 로고    scopus 로고
    • An orthogonal least-suares method for recurrent fuzzy-neural modeling
    • Dec
    • P. A. Mastorocostasand J. B. Theocharis, "An orthogonal least-suares method for recurrent fuzzy-neural modeling," Fuzzy Sets Syst., vol. 140, no. 2, pp. 285-300, Dec. 2003.
    • (2003) Fuzzy Sets Syst , vol.140 , Issue.2 , pp. 285-300
    • Mastorocostas, P.A.1    Theocharis, J.B.2
  • 35
    • 0021375695 scopus 로고
    • Dynamic prediction of traffic volume through kalman filtering theory
    • I. Okutaniand Y. J. Stephanedes, "Dynamic prediction of traffic volume through Kalman filtering theory," Transp. Res. Part B: Methodology, vol. 18, no. 1, pp. 1-11, Feb. 1984. (Pubitemid 14528238)
    • (1984) Transportation Research, Part B: Methodological , vol.18 B , Issue.1 , pp. 1-11
    • Okutani, I.1    Stephanedes, Y.J.2
  • 36
    • 0037448873 scopus 로고    scopus 로고
    • A load curve based fuzzy modeling techniue for short-term load forecasting
    • Apr
    • S. E. Papadakis, J. B. Theocharis,and A. G. Bakirtzis, "A load curve based fuzzy modeling techniue for short-term load forecasting," Fuzzy Sets Syst., vol. 135, no. 2, pp. 279-303, Apr. 2003.
    • (2003) Fuzzy Sets Syst , vol.135 , Issue.2 , pp. 279-303
    • Papadakis, S.E.1    Theocharis, J.B.2    Bakirtzis, A.G.3
  • 37
    • 0032099978 scopus 로고    scopus 로고
    • Automatic early stopping using cross validation: Quantifying the criteria
    • DOI 10.1016/S0893-6080(98)00010-0, PII S0893608098000100
    • L. Prechelt, "Automatic early stopping using cross validation: Quantifying the criteria," Neural Netw., vol. 11, no. 4, pp. 761-767, Jun. 1998. (Pubitemid 28400276)
    • (1998) Neural Networks , vol.11 , Issue.4 , pp. 761-767
    • Prechelt, L.1
  • 38
    • 0001805729 scopus 로고
    • Exponential filtering of traffic data
    • P. Ross, "Exponential filtering of traffic data," in Proc. Transp. Res. Board, Washington, DC, 1982, vol. 869, pp. 43-49.
    • (1982) Proc. Transp. Res. Board, Washington, DC , vol.869 , pp. 43-49
    • Ross, P.1
  • 39
    • 33746610646 scopus 로고    scopus 로고
    • Pop-traffic: A novel fuzzy neural approach to road traffic analysis and prediction
    • DOI 10.1109/TITS.2006.874712, 1637669
    • C. Quek, M. Pasuier,and B. B. S. Lim, "POP-TRAFFIC: A novel fuzzy neuralapproach to road trafficanalysisand prediction," IEEE Trans. Intell. Transp. Syst., vol. 7, no. 2, pp. 133-146, Jun. 2006. (Pubitemid 44144050)
    • (2006) IEEE Transactions on Intelligent Transportation Systems , vol.7 , Issue.2 , pp. 133-146
    • Quek, C.1    Pasquier, M.2    Lim, B.B.S.3
  • 40
    • 0035654279 scopus 로고    scopus 로고
    • Feedforward neural network construction using cross validation
    • DOI 10.1162/089976601317098565
    • R. Setiono, "Feedforward neural network construction using cross validation," Neural Comput., vol. 13, no. 12, pp. 2865-2877, Dec. 2001. (Pubitemid 33598000)
    • (2001) Neural Computation , vol.13 , Issue.12 , pp. 2865-2877
    • Setiono, R.1
  • 41
    • 67349116014 scopus 로고    scopus 로고
    • Computational intelligence based congestion prediction fora dynamic urban street network
    • D. Srinivasan, C. W. Chan,and P. G. Balaji, "Computational intelligence based congestion prediction fora dynamic urban street network," Neurocomputing, vol. 72, no. 10-12, pp. 2710-2716, 2009.
    • (2009) Neurocomputing , vol.72 , Issue.10-12 , pp. 2710-2716
    • Srinivasan, D.1    Chan, C.W.2    Balaji, P.G.3
  • 42
    • 0036692982 scopus 로고    scopus 로고
    • Comparison of parametricand nonparametric models for traffic flow forecasting
    • B. L. Smith, B.M.Williams,and R. K. Oswald, "Comparison of parametricand nonparametric models for traffic flow forecasting," Transp. Res. Part C, Emerging Technol., vol. 19, pp. 303-321, 2002.
    • (2002) Transp. Res. Part C, Emerging Technol , vol.19 , pp. 303-321
    • Smith, B.L.1    Williams, B.M.2    Oswald, R.K.3
  • 43
    • 50249149716 scopus 로고    scopus 로고
    • Fuzzy modelingapproach for combined forecasting of urban traffic flow
    • Oct
    • A. Stathopoulos, L. Dimitriou,and T. Tsekeris, "Fuzzy modelingapproach for combined forecasting of urban traffic flow," Comput.-Aided Civil Infrastruct. Eng., vol. 23, no. 7, pp. 521-535, Oct. 2008.
    • (2008) Comput.-Aided Civil Infrastruct. Eng , vol.23 , Issue.7 , pp. 521-535
    • Stathopoulos, A.1    Dimitriou, L.2    Tsekeris, T.3
  • 44
  • 45
    • 0043026857 scopus 로고    scopus 로고
    • Wavelet neural network control for induction motor drive using sliding-mode design techniue
    • Aug
    • R.-J. Wai, R.-Y. Duen, J.-D. Lee,and H.-H. Chang, "Wavelet neural network control for induction motor drive using sliding-mode design techniue," IEEE Trans. Ind. Electron., vol. 50, no. 4, pp. 733-748, Aug. 2003.
    • (2003) IEEE Trans. Ind. Electron , vol.50 , Issue.4 , pp. 733-748
    • Wai, R.-J.1    Duen, R.-Y.2    Lee, J.-D.3    Chang, H.-H.4
  • 48
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using a fuzzy-neural approach
    • DOI 10.1016/S0968-090X(01)00004-3, PII S0968090X01000043
    • H. Yin, S. C.Wong, J. Xu,and C. K.Wong, "Urban traffic flow prediction usinga fuzzy-neuralapproach," Transp. Res. Part C, Emerging Technol., vol. 10, no. 2, pp. 85-98, Apr. 2002. (Pubitemid 34039575)
    • (2002) Transportation Research Part C: Emerging Technologies , vol.10 , Issue.2 , pp. 85-98
    • Yin, H.1    Wong, S.C.2    Xu, J.3    Wong, C.K.4
  • 49
    • 33947120867 scopus 로고    scopus 로고
    • Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks
    • DOI 10.1109/TSMCB.2006.875869
    • S. J. Yoo, J. B. Park,and Y. H. Choi, "Adaptive dynamic surface control of flexible-joint robots using self-recurrent wavelet neural networks," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 36, no. 6, pp. 1342-1355, Dec. 2006. (Pubitemid 46405765)
    • (2006) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.36 , Issue.6 , pp. 1342-1355
    • Yoo, S.J.1    Park, J.B.2    Choi, Y.H.3
  • 50
    • 36348935677 scopus 로고    scopus 로고
    • Quarterly time-series forecasting with neural networks
    • DOI 10.1109/TNN.2007.896859
    • G. P. Zhangand D. M. Kline, "Quarterly time series forecasting with neural networks," IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1800-1814, Nov. 2007. (Pubitemid 350148428)
    • (2007) IEEE Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1800-1814
    • Zhang, G.P.1    Kline, D.M.2
  • 51
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonaland trend time series
    • Jan
    • G. P. Zhangand M. Qi, "Neural network forecasting for seasonaland trend time series," Eur. J. Oper. Res., vol. 160, no. 2, pp. 501-514, Jan. 2005.
    • (2005) Eur. J. Oper. Res , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 53
    • 31044437283 scopus 로고    scopus 로고
    • Short-term freeway traffic flow prediction: Bayesian combined neural network approach
    • DOI 10.1061/(ASCE)0733-947X(2006)132:2(114)
    • W. Zheng, D. H. Lee,and Q. Shi, "Short-term freeway traffic flow prediction: Bayesian combined neural networkapproach," J. Transp. Eng., vol. 132, no. 2, pp. 114-121, Feb. 2006. (Pubitemid 43119041)
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.2 , pp. 114-121
    • Zheng, W.1    Lee, D.-H.2    Shi, Q.3
  • 56
    • 79952068526 scopus 로고    scopus 로고
    • Travel time prediction using floating car dataapplied to logistics planning
    • Mar
    • A. Simrothand H. Zähle, "Travel time prediction using floating car dataapplied to logistics planning," IEEE Trans. Intell. Transp. Syst., vol. 12, no. 1, pp. 243-253, Mar. 2011.
    • (2011) IEEE Trans. Intell. Transp. Syst , vol.12 , Issue.1 , pp. 243-253
    • Simroth, A.1    Zähle, H.2
  • 57
    • 77649270832 scopus 로고    scopus 로고
    • Predictions of urban volumes in single time series
    • Mar
    • T. Thomas,W.Weijermars,and E. Berkum, "Predictions of urban volumes in single time series," IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 71-80, Mar. 2010.
    • (2010) IEEE Trans. Intell. Transp. Syst , vol.11 , Issue.1 , pp. 71-80
    • Thomas, T.1    Berkum, E.2
  • 58
    • 77649271775 scopus 로고    scopus 로고
    • The reliability of travel time forecasting
    • Mar
    • M. Yang, Y. Liu,and Z. You, "The reliability of travel time forecasting," IEEE Trans. Intell. Transp. Syst., vol. 11, no. 1, pp. 162-171, Mar. 2010.
    • (2010) IEEE Trans. Intell. Transp. Syst , vol.11 , Issue.1 , pp. 162-171
    • Yang, M.1    Liu, Y.2    You, Z.3
  • 59
    • 0028543366 scopus 로고
    • Training feedforward networks with the Maruardtalgorithm
    • Nov
    • M. T. Haganand M. B. Menhaj, "Training feedforward networks with the Maruardtalgorithm," IEEE Trans. Neural Netw., vol. 5, no. 6, pp. 989-993, Nov. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.