메뉴 건너뛰기




Volumn 13, Issue 5-6, 2005, Pages 347-369

Accurate freeway travel time prediction with state-space neural networks under missing data

Author keywords

Advanced traffic information systems; Missing data; Neural network design; Non linear state space models; Recurrent neural networks; Robustness; Simple imputation; State space neural networks; Traffic prediction; Travel time prediction

Indexed keywords

HIGHWAY TRAFFIC CONTROL; NONLINEAR SYSTEMS; REAL TIME SYSTEMS; RECURRENT NEURAL NETWORKS; STATE SPACE METHODS; TIME SERIES ANALYSIS;

EID: 33646762818     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2005.03.001     Document Type: Article
Times cited : (397)

References (54)
  • 1
    • 0031076323 scopus 로고    scopus 로고
    • Using stated preference data for studying the effect of advanced traffic information on drivers' route choice
    • Abdel A., Kitamura R., and Jovanis P. Using stated preference data for studying the effect of advanced traffic information on drivers' route choice. Transportation Research Part C: Emerging Technologies 5C (1997) 39-50
    • (1997) Transportation Research Part C: Emerging Technologies , vol.5 C , pp. 39-50
    • Abdel, A.1    Kitamura, R.2    Jovanis, P.3
  • 2
    • 4444266556 scopus 로고    scopus 로고
    • Short term freeway traffic flow prediction using genetically-optimized time-delay-based neural networks
    • National Academies Press, Washington, DC, USA
    • Abdulhai B., Porwal H., and Recker W. Short term freeway traffic flow prediction using genetically-optimized time-delay-based neural networks. Proceedings of the 78th Annual Meeting of the Transportation Research Board (1999), National Academies Press, Washington, DC, USA
    • (1999) Proceedings of the 78th Annual Meeting of the Transportation Research Board
    • Abdulhai, B.1    Porwal, H.2    Recker, W.3
  • 3
    • 0028752740 scopus 로고    scopus 로고
    • Armitage, W., Lo, J.-C., 1994. Enhancing the robustness of a feedforward neural network in the presence of missing data. In: Neural Networks, 1994. IEEE World Congress on Computational Intelligence, 1994 IEEE International Conference on, vol. 2, pp. 836-839.
  • 4
    • 0001539380 scopus 로고
    • Does providing information to drivers reduce traffic congestion?
    • Arnott R., de Palma A., and Lindsey R. Does providing information to drivers reduce traffic congestion?. Transportation Research A 25 5 (1991) 309-318
    • (1991) Transportation Research A , vol.25 , Issue.5 , pp. 309-318
    • Arnott, R.1    de Palma, A.2    Lindsey, R.3
  • 9
    • 0035567818 scopus 로고    scopus 로고
    • A study of hybrid neural network approaches and the effects of missing data on traffic forecasting
    • Chen H., Grant-Muller S., Mussone L., and Montgomery F. A study of hybrid neural network approaches and the effects of missing data on traffic forecasting. Neural Computing and Applications 10 (2001) 277-286
    • (2001) Neural Computing and Applications , vol.10 , pp. 277-286
    • Chen, H.1    Grant-Muller, S.2    Mussone, L.3    Montgomery, F.4
  • 14
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • Dia H. An object-oriented neural network approach to short-term traffic forecasting. European Journal of Operational Research 131 2 (2001) 253-261
    • (2001) European Journal of Operational Research , vol.131 , Issue.2 , pp. 253-261
    • Dia, H.1
  • 15
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • Dorffner G. Neural networks for time series processing. Neural Network World 6 (1996) 447-468
    • (1996) Neural Network World , vol.6 , pp. 447-468
    • Dorffner, G.1
  • 16
    • 0029485810 scopus 로고
    • A review of neural networks applied to transport
    • Dougherty M. A review of neural networks applied to transport. Transportation Research C 3 4 (1995) 247-260
    • (1995) Transportation Research C , vol.3 , Issue.4 , pp. 247-260
    • Dougherty, M.1
  • 17
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J. Finding structure in time. Cognitive Science 14 (1990) 179-211
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.1
  • 18
    • 0030702721 scopus 로고    scopus 로고
    • Foresee, F.D., Hagan, M.T., 1997. Gauss-newton approximation to Bayesian learning. In: International Conference on Neural Networks, vol. 3, pp. 1930-1935.
  • 19
    • 0036732448 scopus 로고    scopus 로고
    • Neuro-fuzzy approach to processing inputs with missing values in pattern recognition problems
    • Gabrys B. Neuro-fuzzy approach to processing inputs with missing values in pattern recognition problems. International Journal of Approximate Reasoning 30 3 (2002) 149-179
    • (2002) International Journal of Approximate Reasoning , vol.30 , Issue.3 , pp. 149-179
    • Gabrys, B.1
  • 20
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm
    • Hagan M.T., and Menhaj M.B. Training feed-forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks 5 6 (1994) 989-993
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 21
    • 0004199140 scopus 로고
    • Addison-Wesley Publishing Company, Readen, MA, USA
    • Hecht-Nielsen R. Neurocomputing (1990), Addison-Wesley Publishing Company, Readen, MA, USA
    • (1990) Neurocomputing
    • Hecht-Nielsen, R.1
  • 24
    • 0035717104 scopus 로고    scopus 로고
    • Evaluation framework for dynamic vehicle routing strategies under real-time information
    • Hu T.Y. Evaluation framework for dynamic vehicle routing strategies under real-time information. Transportation Research Record 1774 (2001) 115-122
    • (2001) Transportation Research Record , vol.1774 , pp. 115-122
    • Hu, T.Y.1
  • 25
    • 84863020369 scopus 로고    scopus 로고
    • A comparative analysis of short-range travel time prediction methods
    • National Academies Press, Washington, DC, USA
    • Huisken G., and Van Berkum E.C. A comparative analysis of short-range travel time prediction methods. TRB 2003 Annual Meeting CD-ROM (2003), National Academies Press, Washington, DC, USA
    • (2003) TRB 2003 Annual Meeting CD-ROM
    • Huisken, G.1    Van Berkum, E.C.2
  • 26
    • 85029828871 scopus 로고    scopus 로고
    • Innamaa, S., 2001. Short term prediction of highway travel time using mlp neural networks. In: Proceedings of the 8th World Congress on Intelligent Transport Systems, Sydney, Australia.
  • 27
    • 0036848533 scopus 로고    scopus 로고
    • Performance evaluation of short-term time-series traffic prediction model
    • Ishak S., and Al-Deek H. Performance evaluation of short-term time-series traffic prediction model. Journal of Transportation Engineering 128 6 (2002) 490-498
    • (2002) Journal of Transportation Engineering , vol.128 , Issue.6 , pp. 490-498
    • Ishak, S.1    Al-Deek, H.2
  • 28
    • 4444272525 scopus 로고    scopus 로고
    • Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings
    • National Academies Press, Washington, DC, USA
    • Ishak S., and Alecsandru C. Optimizing traffic prediction performance of neural networks under various topological, input, and traffic condition settings. Transportation Research Board Annual Meeting CD-ROM (2003), National Academies Press, Washington, DC, USA
    • (2003) Transportation Research Board Annual Meeting CD-ROM
    • Ishak, S.1    Alecsandru, C.2
  • 29
    • 1642336343 scopus 로고    scopus 로고
    • Optimization of dynamic neural networks performance for short-term traffic prediction
    • National Academies Press, Washington, DC, USA
    • Ishak S., Kotha P., and Alecsandru C. Optimization of dynamic neural networks performance for short-term traffic prediction. Transportation Research Board Annual Meeting CD-ROM (2003), National Academies Press, Washington, DC, USA
    • (2003) Transportation Research Board Annual Meeting CD-ROM
    • Ishak, S.1    Kotha, P.2    Alecsandru, C.3
  • 30
    • 0034787335 scopus 로고    scopus 로고
    • Using spatial interpolation to construct a comprehensive archive of Australian climate data
    • Jeffrey S.J., Carter J.O., Moodie K.B., and Beswick A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modeling and Software 16 4 (2001) 309-330
    • (2001) Environmental Modeling and Software , vol.16 , Issue.4 , pp. 309-330
    • Jeffrey, S.J.1    Carter, J.O.2    Moodie, K.B.3    Beswick, A.R.4
  • 31
    • 84977289750 scopus 로고
    • Effect of traffic information on commuters propensity to change route and departure time
    • Khattak A.J., Schofer J.L., and Koppelman F.S. Effect of traffic information on commuters propensity to change route and departure time. Journal of Advanced Transportation 29 2 (1995) 193-212
    • (1995) Journal of Advanced Transportation , vol.29 , Issue.2 , pp. 193-212
    • Khattak, A.J.1    Schofer, J.L.2    Koppelman, F.S.3
  • 32
    • 0001117376 scopus 로고    scopus 로고
    • Spatiotemporal connectionist networks: a taxonomy and review
    • Kremer S.C. Spatiotemporal connectionist networks: a taxonomy and review. Neural Computation 13 (2001) 249-306
    • (2001) Neural Computation , vol.13 , pp. 249-306
    • Kremer, S.C.1
  • 33
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks
    • MacKay D.J.C. Probable networks and plausible predictions: a review of practical Bayesian methods for supervised neural networks. Network: Computation in Neural Systems 6 3 (1995) 469-505
    • (1995) Network: Computation in Neural Systems , vol.6 , Issue.3 , pp. 469-505
    • MacKay, D.J.C.1
  • 34
    • 0033117197 scopus 로고    scopus 로고
    • Dynamics of commuting decision behavior under advanced traveller information systems
    • Mahmassani H.S., and Liu Y.-H. Dynamics of commuting decision behavior under advanced traveller information systems. Transportation Research C 7 (1999) 91-107
    • (1999) Transportation Research C , vol.7 , pp. 91-107
    • Mahmassani, H.S.1    Liu, Y.-H.2
  • 35
    • 0029749581 scopus 로고    scopus 로고
    • Meert, K., 1996. A real-time recurrent learning network structure for dealing with missing sensor data. In: Proceedings of the 1996 IEEE Conference on Neural Networks, Washington, DC, USA, vol. 3, pp. 1600-1605.
  • 36
    • 0025536870 scopus 로고    scopus 로고
    • Nguyen, D., Widrow, B., 1990. Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. In: Proceedings of the International Joint Conference on Neural Networks, vol. 3, pp. 21-26.
  • 37
    • 0032155636 scopus 로고    scopus 로고
    • Forecasting multiple-period freeway link travel times using modular neural networks
    • Park D.J., and Rilett L.R. Forecasting multiple-period freeway link travel times using modular neural networks. Transportation Research Record 1617 (1998) 163-170
    • (1998) Transportation Research Record , vol.1617 , pp. 163-170
    • Park, D.J.1    Rilett, L.R.2
  • 38
    • 0032623401 scopus 로고    scopus 로고
    • Forecasting freeway link travel times with a multilayer feed-forward neural network
    • Park D., and Rilett L. Forecasting freeway link travel times with a multilayer feed-forward neural network. Computer Aided Civil and Infrastructure Engineering 14 5 (1999) 357-367
    • (1999) Computer Aided Civil and Infrastructure Engineering , vol.14 , Issue.5 , pp. 357-367
    • Park, D.1    Rilett, L.2
  • 39
    • 0034784103 scopus 로고    scopus 로고
    • Rice, J., Van Zwet, E., 2001. A simple and effective method for predicting travel times on freeways. In: Proceedings of the IEEE Conference on Intelligent Transportation Systems, Oakland, CA, United States, pp. 227-232.
  • 40
    • 0035718404 scopus 로고    scopus 로고
    • Direct forecasting of freeway corridor travel times using spectral basis neural networks
    • Rilett L.R., and Park D. Direct forecasting of freeway corridor travel times using spectral basis neural networks. Transportation Research Record 1752 (2001) 140-147
    • (2001) Transportation Research Record , vol.1752 , pp. 140-147
    • Rilett, L.R.1    Park, D.2
  • 41
    • 85029859377 scopus 로고    scopus 로고
    • Sarle, W.S., 2004. Neural network faq, ftp://ftp.sas.com/pub/neural/faq.html, monthly posting to the Usenet newsgroup comp.ai.neural-nets.
  • 43
    • 85029847680 scopus 로고    scopus 로고
    • Smulders, S.A., Messmer, A., Knibbe, W.J.J., 1999. Real-time application of metanet in traffic management centres. In: Proceedings of the 6th World Congress on Intelligent Transport Systems (ITS), Toronto, Canada.
  • 44
    • 10644253293 scopus 로고    scopus 로고
    • Short-term traffic forecasting using the local linear regression model
    • National Academies Press, Washington, DC, USA
    • Sun H., Liu H.X., Xiao H., He R.R., and Ran B. Short-term traffic forecasting using the local linear regression model. Transportation Research Board Annual Meeting CD-ROM (2003), National Academies Press, Washington, DC, USA
    • (2003) Transportation Research Board Annual Meeting CD-ROM
    • Sun, H.1    Liu, H.X.2    Xiao, H.3    He, R.R.4    Ran, B.5
  • 45
    • 85029864652 scopus 로고    scopus 로고
    • Van Berkum, P., Van der Mede, P., 1993. The Impact of Traffic Information: Dynamics in Route and Departure Time Choice. Delft University Press, Delft, The Netherlands. PhD thesis of the Transport and Planning Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology.
  • 47
    • 85029861174 scopus 로고    scopus 로고
    • Van Lint, J.W.C., 2004. Reliable Travel Time Prediction for Freeways. TRAIL thesis series. TRAIL Research School, Delft.
  • 48
    • 0036974476 scopus 로고    scopus 로고
    • Freeway travel time prediction with state-space neural networks-modeling state-space dynamics with recurrent neural networks
    • Van Lint J.W.C., Hoogendoorn S.P., and Van Zuylen H.J. Freeway travel time prediction with state-space neural networks-modeling state-space dynamics with recurrent neural networks. Transportation Research Record 1811 (2002) 30-39
    • (2002) Transportation Research Record , vol.1811 , pp. 30-39
    • Van Lint, J.W.C.1    Hoogendoorn, S.P.2    Van Zuylen, H.J.3
  • 49
    • 1942505212 scopus 로고    scopus 로고
    • Improving a travel time estimation algorithm by using dual loop detectors
    • Van Lint J.W.C., and Van der Zijpp N.J. Improving a travel time estimation algorithm by using dual loop detectors. Transportation Research Record 1855 (2003) 41-48
    • (2003) Transportation Research Record , vol.1855 , pp. 41-48
    • Van Lint, J.W.C.1    Van der Zijpp, N.J.2
  • 50
    • 85029880136 scopus 로고    scopus 로고
    • Van Toorenburg, J.A.C., 1998. Astrival functionele specificatie algoritme, rijtijd en filelengteschatter voor meetvak (in dutch), Technical report, AVV Transport Research Centre, Ministry of Transport, Public Works and Water Management.
  • 51
    • 85029836607 scopus 로고    scopus 로고
    • Van Zuylen, H.J., Muller, T.H.J., 2002. Regiolab Delft. In: Proceedings of the 9th World Congress on Intelligent Transport Systems, CD-Rom, Chicago, IL, USA. Available from: .
  • 52
    • 85029879088 scopus 로고    scopus 로고
    • Vermijs, R.G.M.M., Schuurman, H., 1994. Evaluating capacity of freeway weaving sections and on-ramps using the microscopic simulation model fosim. In: Proceedings of the second international symposium on highway capacity, Sydney, Australia, vol. 2, pp. 651-670.
  • 53
    • 84888808750 scopus 로고    scopus 로고
    • Multivariate traffic flow prediction: an evaluation of arimax modelling
    • National Academies Press, Washington, DC, USA
    • Williams B.M. Multivariate traffic flow prediction: an evaluation of arimax modelling. Transportation Research Board 80th Annual Meeting, CD-Rom (2001), National Academies Press, Washington, DC, USA
    • (2001) Transportation Research Board 80th Annual Meeting, CD-Rom
    • Williams, B.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.