-
1
-
-
0032207514
-
Urban freeway traffic flow prediction: Application of seasonal autoregressive integrated moving average and exponential smoothing models
-
TRB, National Research Council, Washington, D.C.
-
Williams, B. M., P. K. Durvasula, and D. E. Brown. Urban Freeway Traffic Flow Prediction: Application of Seasonal Autoregressive Integrated Moving Average and Exponential Smoothing Models. In Transportation Research Record 1644, TRB, National Research Council, Washington, D.C., 1998, pp. 132-141.
-
(1998)
Transportation Research Record 1644
, pp. 132-141
-
-
Williams, B.M.1
Durvasula, P.K.2
Brown, D.E.3
-
2
-
-
0018729076
-
Analysis of freeway traffic time-series data by using box-jenkins techniques
-
TRB, National Research Council, Washington, D.C.
-
Ahmed, M. S., and A. R. Cook. Analysis of Freeway Traffic Time-Series Data By Using Box-Jenkins Techniques. In Transportation Research Record 722, TRB, National Research Council, Washington, D.C., 1979, pp. 1-9.
-
(1979)
Transportation Research Record 722
, pp. 1-9
-
-
Ahmed, M.S.1
Cook, A.R.2
-
3
-
-
0019025588
-
Use of the box and jenkins time series technique in traffic forecasting
-
Nihan, N. L., and K. O. Holmesland. Use of the Box and Jenkins Time Series Technique in Traffic Forecasting. Transportation, Vol. 9, No. 2, 1980, pp. 125-143.
-
(1980)
Transportation
, vol.9
, Issue.2
, pp. 125-143
-
-
Nihan, N.L.1
Holmesland, K.O.2
-
4
-
-
0026128928
-
Nonparametric regression and short-term freeway traffic forecasting
-
Davis, G. A., and N. L. Nihan. Nonparametric Regression and Short-Term Freeway Traffic Forecasting. Journal of Transportation Engineering, Vol. 117, No. 2, 1991, pp. 178-188.
-
(1991)
Journal of Transportation Engineering
, vol.117
, Issue.2
, pp. 178-188
-
-
Davis, G.A.1
Nihan, N.L.2
-
5
-
-
0031472064
-
Traffic flow forecasting: Comparison of modeling approaches
-
Smith, B. L., and M. J. Demetsky. Traffic Flow Forecasting: Comparison of Modeling Approaches. Journal of Transportation Engineering, Vol. 123, No. 4, 1997, pp. 261-266.
-
(1997)
Journal of Transportation Engineering
, vol.123
, Issue.4
, pp. 261-266
-
-
Smith, B.L.1
Demetsky, M.J.2
-
6
-
-
0021375695
-
Dynamic prediction of traffic volume through kalman filtering theory
-
Okutani, I., and Y. J. Stephanedes. Dynamic Prediction of Traffic Volume Through Kalman Filtering Theory. Transportation Research Part B, Vol. 18, No. 1, 1984, pp. 1-11.
-
(1984)
Transportation Research Part B
, vol.18
, Issue.1
, pp. 1-11
-
-
Okutani, I.1
Stephanedes, Y.J.2
-
7
-
-
0037954189
-
A multivariate state space approach for urban traffic flow modeling and prediction
-
Stathopoulos, A., and M. G. Karlaftis. A Multivariate State Space Approach for Urban Traffic Flow Modeling and Prediction. Transportation Research Part C, Vol. 11, No. 2, 2003, pp. 121-135.
-
(2003)
Transportation Research Part C
, vol.11
, Issue.2
, pp. 121-135
-
-
Stathopoulos, A.1
Karlaftis, M.G.2
-
8
-
-
34249030515
-
Short-term traffic volume forecasting using kalman filter with discrete wavelet decomposition
-
Xie, Y., Y. Zhang, and Z. Ye. Short-Term Traffic Volume Forecasting Using Kalman Filter with Discrete Wavelet Decomposition. Computer-Aided Civil and Infrastructure Engineering, Vol. 22, No. 5, 2007, pp. 326-334.
-
(2007)
Computer-Aided Civil and Infrastructure Engineering
, vol.22
, Issue.5
, pp. 326-334
-
-
Xie, Y.1
Zhang, Y.2
Ye, Z.3
-
9
-
-
0001891123
-
Short-term traffic flow prediction: Neural network approach
-
TRB, National Research Council, Washington, D.C.
-
Smith, B. L., and M. J. Demetsky. Short-Term Traffic Flow Prediction: Neural Network Approach. In Transportation Research Record 1453, TRB, National Research Council, Washington, D.C., 1994, pp. 98-104.
-
(1994)
Transportation Research Record 1453
, pp. 98-104
-
-
Smith, B.L.1
Demetsky, M.J.2
-
10
-
-
0003023581
-
Short-term freeway traffic volume forecasting using radial basis function neural network
-
TRB, National Research Council, Washington, D.C.
-
Park, B., C. J. Messer, and T. Urbanik II. Short-Term Freeway Traffic Volume Forecasting Using Radial Basis Function Neural Network. In Transportation Research Record 1651, TRB, National Research Council, Washington, D.C., 1998, pp. 39-47.
-
(1998)
Transportation Research Record 1651
, pp. 39-47
-
-
Park, B.1
Messer, C.J.2
Urbanik, I.I.T.3
-
11
-
-
0036532655
-
Urban traffic flow prediction using a fuzzy-neural approach
-
Yin, H. B., S. C. Wong, J. M. Xu, and C. K. Wong. Urban Traffic Flow Prediction Using a Fuzzy-Neural Approach. Transportation Research Part C, Vol. 10, No. 2, 2002, pp. 85-98.
-
(2002)
Transportation Research Part C
, vol.10
, Issue.2
, pp. 85-98
-
-
Yin, H.B.1
Wong, S.C.2
Xu, J.M.3
Wong, C.K.4
-
12
-
-
33746860294
-
A wavelet network model for short-term traffic volume forecasting
-
DOI 10.1080/15472450600798551, PII J412T750H8Q20368
-
Xie, Y., and Y. Zhang. A Wavelet Network Model for Short-Term Traffic Volume Forecasting. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, Vol. 10, No. 3, 2006, pp. 141-150. (Pubitemid 44180407)
-
(2006)
Journal of Intelligent Transportation Systems: Technology, Planning, and Operations
, vol.10
, Issue.3
, pp. 141-150
-
-
Xie, Y.1
Zhang, Y.2
-
13
-
-
33646762818
-
Accurate freeway travel time prediction with state-space neural networks under missing data
-
Van Lint, J. W. C., S. P. Hoogendoorn, and H. J. Van Zuylen. Accurate Freeway Travel Time Prediction with State-Space Neural Networks Under Missing Data. Transportation Research Part C, Vol. 13, Nos. 5-6, 2005, pp. 347-369.
-
(2005)
Transportation Research Part C
, vol.13
, Issue.5-6
, pp. 347-369
-
-
Van Lint, J.W.C.1
Hoogendoorn, S.P.2
Van Zuylen, H.J.3
-
14
-
-
0032623401
-
Forecasting freeway link travel times with a multilayer feedforward neural network
-
Park, D., and L. R. Rilett. Forecasting Freeway Link Travel Times with a Multilayer Feedforward Neural Network. Computer-Aided Civil and Infrastructure Engineering, Vol. 14, No. 5, 1999, pp. 357-367.
-
(1999)
Computer-Aided Civil and Infrastructure Engineering
, vol.14
, Issue.5
, pp. 357-367
-
-
Park, D.1
Rilett, L.R.2
-
15
-
-
23844513726
-
Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach
-
Vlahogianni, E. I., M. G. Karlaftis, and J. C. Golias. Optimized and Meta-Optimized Neural Networks for Short-Term Traffic Flow Prediction: A Genetic Approach. Transportation Research Part C, Vol. 13, No. 3, 2005, pp. 211-234.
-
(2005)
Transportation Research Part C
, vol.13
, Issue.3
, pp. 211-234
-
-
Vlahogianni, E.I.1
Karlaftis, M.G.2
Golias, J.C.3
-
16
-
-
40449104106
-
Forecasting of short-term freeway volume with v-support vector machines
-
Transportation Research Board of the National Academies, Washington, D.C.
-
Zhang, Y., and Y. Xie. Forecasting of Short-Term Freeway Volume with v-Support Vector Machines, In Transportation Research Record: Journal of the Transportation Research Board, No. 2024, Transportation Research Board of the National Academies, Washington, D.C., 2007, pp. 92-99.
-
(2007)
Transportation Research Record: Journal of the Transportation Research Board 2024
, pp. 92-99
-
-
Zhang, Y.1
Xie, Y.2
-
17
-
-
10644266188
-
Travel-time prediction with support vector regression
-
Wu, C. H., J. M. Ho, and D. T. Lee. Travel-Time Prediction with Support Vector Regression. IEEE Transactions on Intelligent Transportation Systems, Vol. 5, No. 4, 2004, pp. 276-281.
-
(2004)
IEEE Transactions on Intelligent Transportation Systems
, vol.5
, Issue.4
, pp. 276-281
-
-
Wu, C.H.1
Ho, J.M.2
Lee, D.T.3
-
18
-
-
0030298951
-
Combining kohonen maps with ARIMA time series models to forecast traffic flow
-
Van Der Voort, M., M. Dougherty, and S. Watson. Combining Kohonen Maps with ARIMA Time Series Models to Forecast Traffic Flow. Transportation Research Part C, Vol. 4, No. 5, 1996, pp. 307-318.
-
(1996)
Transportation Research Part C
, vol.4
, Issue.5
, pp. 307-318
-
-
Van Der Voort, M.1
Dougherty, M.2
Watson, S.3
-
19
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik, K., M. Stinchcombe, and H. White. Multilayer Feedforward Networks Are Universal Approximators. Neural Networks, Vol. 2, No. 5, 1989, pp. 359-366.
-
(1989)
Neural Networks
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
21
-
-
0037695279
-
-
World Scientific Publishing Co. Pte. Ltd., Singapore
-
Suykens, J. A. K., T. V. Gestel, J. D. Brabanter, B. D. Moor, and J. Vanderwalle. Least Squares Support Vector Machines. World Scientific Publishing Co. Pte. Ltd., Singapore, 2002.
-
(2002)
Least Squares Support Vector Machines
-
-
Suykens, J.A.K.1
Gestel, T.V.2
Brabanter, J.D.3
Moor, B.D.4
Vanderwalle, J.5
-
23
-
-
12444291490
-
Gaussian processes for machine learning
-
Seeger, M. Gaussian Processes for Machine Learning. International Journal of Neural Systems, Vol. 14, No. 2, 2004, pp. 69-106.
-
(2004)
International Journal of Neural Systems
, vol.14
, Issue.2
, pp. 69-106
-
-
Seeger, M.1
-
24
-
-
0042326376
-
Bayesian trigonometric support vector classifier
-
Chu, W., S. S. Keerthi, and C. J. Ong. Bayesian Trigonometric Support Vector Classifier. Neural Computation, Vol. 15, No. 9, 2003, pp. 2227-2254.
-
(2003)
Neural Computation
, vol.15
, Issue.9
, pp. 2227-2254
-
-
Chu, W.1
Keerthi, S.S.2
Ong, C.J.3
-
25
-
-
55349107801
-
Bayesian learning with gaussian processes for supervised classification of hyperspectral data
-
Zhao, K., S. C. Popescu, and X. Zhang. Bayesian Learning with Gaussian Processes for Supervised Classification of Hyperspectral Data. Photogrammetric Engineering & Remote Sensing, Vol. 74, No. 10, 2008, pp. 1223-1234.
-
(2008)
Photogrammetric Engineering & Remote Sensing
, vol.74
, Issue.10
, pp. 1223-1234
-
-
Zhao, K.1
Popescu, S.C.2
Zhang, X.3
-
26
-
-
78651330230
-
-
Accessed Nov. 1, 2009
-
Documentation for GPML MATLAB Code. http://www.gaussian process.org/gpml/code/matlab/doc/. Accessed Nov. 1, 2009.
-
Documentation for GPML MATLAB Code
-
-
-
27
-
-
80055091440
-
-
(Version 2.9.1). Accessed July 3, 2009
-
The R Project for Statistical Computing (Version 2.9.1). http://www. r-project.org/. Accessed July 3, 2009.
-
The R Project for Statistical Computing
-
-
|