메뉴 건너뛰기




Volumn 19, Issue 3, 2011, Pages 387-399

Statistical methods versus neural networks in transportation research: Differences, similarities and some insights

Author keywords

Neural networks; Statistical models; Transportation research

Indexed keywords

DATA HANDLING; INFORMATION ANALYSIS; INTELLIGENT COMPUTING;

EID: 79951775181     PISSN: 0968090X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.trc.2010.10.004     Document Type: Article
Times cited : (752)

References (130)
  • 1
    • 1842480288 scopus 로고    scopus 로고
    • Predicting injury severity levels in traffic crashes: a modeling comparison
    • Abdel-Aty M.A., Abdelwahab H.T. Predicting injury severity levels in traffic crashes: a modeling comparison. Journal of Transportation Engineering 2004, 130(2):204-210.
    • (2004) Journal of Transportation Engineering , vol.130 , Issue.2 , pp. 204-210
    • Abdel-Aty, M.A.1    Abdelwahab, H.T.2
  • 2
    • 0036957692 scopus 로고    scopus 로고
    • Artificial neural networks and logit models for traffic safety analysis of toll plazas
    • Abdelwahab H.T., Abdel-Aty M.A. Artificial neural networks and logit models for traffic safety analysis of toll plazas. Transportation Research Record 2002, 1784:115-125.
    • (2002) Transportation Research Record , vol.1784 , pp. 115-125
    • Abdelwahab, H.T.1    Abdel-Aty, M.A.2
  • 3
    • 0033340740 scopus 로고    scopus 로고
    • Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network
    • Abdulhai B., Ritchie S.G. Enhancing the universality and transferability of freeway incident detection using a Bayesian-based neural network. Journal of Transportation Research - Part C: Emerging Technologies 1999, 7(5):261-280.
    • (1999) Journal of Transportation Research - Part C: Emerging Technologies , vol.7 , Issue.5 , pp. 261-280
    • Abdulhai, B.1    Ritchie, S.G.2
  • 6
    • 0000501656 scopus 로고
    • Information theory and the extension of the maximum likelihood principle
    • Academia Kiado, Budapest, B.N. Petrov, F. Csaki (Eds.)
    • Akaike H. Information theory and the extension of the maximum likelihood principle. Second International Symposium on Information Theory 1973, 267-281. Academia Kiado, Budapest. B.N. Petrov, F. Csaki (Eds.).
    • (1973) Second International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 7
    • 0343370766 scopus 로고    scopus 로고
    • A novel approach for traffic accident analysis and prediction using artificial neural networks
    • Al-Alawi S., Ali G., Bakheit C. A novel approach for traffic accident analysis and prediction using artificial neural networks. Road Transport Research 1996, 5:118-128.
    • (1996) Road Transport Research , vol.5 , pp. 118-128
    • Al-Alawi, S.1    Ali, G.2    Bakheit, C.3
  • 8
    • 0035726967 scopus 로고    scopus 로고
    • Which method is better for developing freight planning models at seaports: neural networks or multiple regression?
    • Al-Deek H.M. Which method is better for developing freight planning models at seaports: neural networks or multiple regression?. Journal of the Transportation Research Board 2001, 1763:90-97.
    • (2001) Journal of the Transportation Research Board , vol.1763 , pp. 90-97
    • Al-Deek, H.M.1
  • 9
    • 85029848530 scopus 로고
    • Arbib, M.A. (Ed.), The Handbook of Brain Theory and Neural Networks. MIT Press/Bradford Books,
    • Amari, S., 1995. In: Arbib, M.A. (Ed.), The Handbook of Brain Theory and Neural Networks. MIT Press/Bradford Books, pp. 522-526.
    • (1995) , pp. 522-552
    • Amari, S.1
  • 11
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Anders U., Korn O. Model selection in neural networks. Neural Networks 1999, 12:309-333.
    • (1999) Neural Networks , vol.12 , pp. 309-333
    • Anders, U.1    Korn, O.2
  • 12
    • 33947598183 scopus 로고    scopus 로고
    • Development of transport mode choice model by using adaptive neuro-fuzzy inference system
    • Andrade K., Uchida K., Kagaya S. Development of transport mode choice model by using adaptive neuro-fuzzy inference system. Transportation Research Record 2006, 1977:295-304.
    • (2006) Transportation Research Record , vol.1977 , pp. 295-304
    • Andrade, K.1    Uchida, K.2    Kagaya, S.3
  • 14
    • 0035372090 scopus 로고    scopus 로고
    • Reinforcement learning in neural fuzzy traffic signal control
    • Bingham E. Reinforcement learning in neural fuzzy traffic signal control. European Journal of Operational Research 2001, 131(2):232-241.
    • (2001) European Journal of Operational Research , vol.131 , Issue.2 , pp. 232-241
    • Bingham, E.1
  • 15
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press, ISBN:0-19-853864-2.
    • Bishop, Ch.M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, ISBN:0-19-853864-2.
    • (1995)
    • Bishop, Ch.M.1
  • 16
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures
    • Breiman L. Statistical modeling: the two cultures. Statistical Science 2001, 16:199-231.
    • (2001) Statistical Science , vol.16 , pp. 199-231
    • Breiman, L.1
  • 17
    • 57449100830 scopus 로고    scopus 로고
    • Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach
    • Cai M., Yin Y., Xie M. Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transportation Research Part D: Transport and Environment 2009, 14(1):32-41.
    • (2009) Transportation Research Part D: Transport and Environment , vol.14 , Issue.1 , pp. 32-41
    • Cai, M.1    Yin, Y.2    Xie, M.3
  • 18
    • 19544394397 scopus 로고    scopus 로고
    • Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models
    • Cantarella G.E., de Luca S. Multilayer feedforward networks for transportation mode choice analysis: an analysis and a comparison with random utility models. Transportation Research Part C 2005, 13:121-155.
    • (2005) Transportation Research Part C , vol.13 , pp. 121-155
    • Cantarella, G.E.1    de Luca, S.2
  • 19
    • 1942437548 scopus 로고    scopus 로고
    • Modeling freight distribution using artificial neural networks
    • Celik H.M. Modeling freight distribution using artificial neural networks. Journal of Transport Geography 2004, 12:141-148.
    • (2004) Journal of Transport Geography , vol.12 , pp. 141-148
    • Celik, H.M.1
  • 20
    • 33745813161 scopus 로고    scopus 로고
    • Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modeling
    • Celikoglu H.B. Application of radial basis function and generalized regression neural networks in non-linear utility function specification for travel mode choice modeling. Mathematical and Computer Modelling 2006, 44:640-658.
    • (2006) Mathematical and Computer Modelling , vol.44 , pp. 640-658
    • Celikoglu, H.B.1
  • 21
    • 33750949227 scopus 로고    scopus 로고
    • Modelling public transport trips by radial basis function neural, networks
    • Celikoglu H.B., Cigizoglu H.K. Modelling public transport trips by radial basis function neural, networks. Mathematical and Computer Modelling 2007, 45:480-489.
    • (2007) Mathematical and Computer Modelling , vol.45 , pp. 480-489
    • Celikoglu, H.B.1    Cigizoglu, H.K.2
  • 22
    • 27544497495 scopus 로고    scopus 로고
    • Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network
    • Chang L.-Y. Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network. Safety Science 2005, 43:541-557.
    • (2005) Safety Science , vol.43 , pp. 541-557
    • Chang, L.-Y.1
  • 23
    • 35248870046 scopus 로고    scopus 로고
    • Prediction of ambient carbon monoxide concentration using nonlinear time series analysis technique
    • Chelani A.B., Devotta S. Prediction of ambient carbon monoxide concentration using nonlinear time series analysis technique. Transportation Research Part D 2007, 12:596-600.
    • (2007) Transportation Research Part D , vol.12 , pp. 596-600
    • Chelani, A.B.1    Devotta, S.2
  • 24
    • 0035567818 scopus 로고    scopus 로고
    • A study of hybrid neural network approaches and the effects of missing data on traffic forecasting
    • Chen H., Grant-Muller S., Mussone L., Montgomery F. A study of hybrid neural network approaches and the effects of missing data on traffic forecasting. Neural Computing & Applications 2001, 10:277-286.
    • (2001) Neural Computing & Applications , vol.10 , pp. 277-286
    • Chen, H.1    Grant-Muller, S.2    Mussone, L.3    Montgomery, F.4
  • 25
    • 84972539015 scopus 로고
    • Neural networks: a review from a statistical perspective
    • Cheng B., Titterington D.M. Neural networks: a review from a statistical perspective. Statistical Science 1994, 9:2-54.
    • (1994) Statistical Science , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 26
    • 0029416188 scopus 로고
    • Automated detection of lane blocking freeway incidents using artificial neural networks
    • Cheu R.L., Ritchie S.G. Automated detection of lane blocking freeway incidents using artificial neural networks. Transportation Research Part C: Emerging Technologies 1995, 3(6):371-388.
    • (1995) Transportation Research Part C: Emerging Technologies , vol.3 , Issue.6 , pp. 371-388
    • Cheu, R.L.1    Ritchie, S.G.2
  • 28
    • 0036719106 scopus 로고    scopus 로고
    • Dynamic bus arrival time prediction with artificial neural networks
    • Chien S.I-Jy., Ding Y., Wei C. Dynamic bus arrival time prediction with artificial neural networks. ASCE Journal of Transportation Engineering 2002, 128(5):429-438.
    • (2002) ASCE Journal of Transportation Engineering , vol.128 , Issue.5 , pp. 429-438
    • Chien, S.I.-J.1    Ding, Y.2    Wei, C.3
  • 32
    • 34547500149 scopus 로고    scopus 로고
    • Modeling drivers' compliance and route choice behavior in response to travel information
    • Dia H., Panwai S. Modeling drivers' compliance and route choice behavior in response to travel information. Nonlinear Dynamics 2007, 49:493-509.
    • (2007) Nonlinear Dynamics , vol.49 , pp. 493-509
    • Dia, H.1    Panwai, S.2
  • 33
    • 45849138568 scopus 로고    scopus 로고
    • Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow
    • Dimitriou L., Tsekeris T., Stathopoulos Adaptive hybrid fuzzy rule-based system approach for modeling and predicting urban traffic flow. Transportation Research Part C 2008, 16:554-573.
    • (2008) Transportation Research Part C , vol.16 , pp. 554-573
    • Dimitriou, L.1    Tsekeris, T.S.2
  • 35
    • 0003708406 scopus 로고
    • Spline Smoothing and Nonparametric Regression of Statistics, Textbooks and Monographs, Marcel Dekker
    • Eubank, R.L., 1988. Spline Smoothing and Nonparametric Regression of Statistics, Textbooks and Monographs, vol. 90. Marcel Dekker.
    • (1988) , vol.90
    • Eubank, R.L.1
  • 36
    • 0029342676 scopus 로고
    • Roadway seasonal classification using neural networks
    • Faghri A., Hua J. Roadway seasonal classification using neural networks. Journal of Computing in Civil Engineering 1995, 9(3):209-215.
    • (1995) Journal of Computing in Civil Engineering , vol.9 , Issue.3 , pp. 209-215
    • Faghri, A.1    Hua, J.2
  • 37
    • 0012320945 scopus 로고    scopus 로고
    • Statistical evaluation of neural network experiments: minimum requirements and current practice
    • Proceedings of the 13th European Meeting on Cybernetics and Systems Research, Austrian Society for Cybernetic Studies, Vienna,
    • Flexer, A., 1996. Statistical evaluation of neural network experiments: minimum requirements and current practice. In: Proceedings of the 13th European Meeting on Cybernetics and Systems Research, Austrian Society for Cybernetic Studies, Vienna, vol. 2, pp. 1005-1008.
    • (1996) , vol.2 , pp. 1005-1008
    • Flexer, A.1
  • 38
    • 0029735845 scopus 로고    scopus 로고
    • A fuzzy expert system for damage assessment using genetic algorithms and neural networks
    • Furuta H., He J., Watanabe E. A fuzzy expert system for damage assessment using genetic algorithms and neural networks. Microcomputers in Civil Engineering 1996, 11(1):37-45.
    • (1996) Microcomputers in Civil Engineering , vol.11 , Issue.1 , pp. 37-45
    • Furuta, H.1    He, J.2    Watanabe, E.3
  • 39
    • 5744254980 scopus 로고    scopus 로고
    • Decision framework for pavement friction management of airport runways
    • Fwa T.F., Chan W.T., Lim C.T. Decision framework for pavement friction management of airport runways. Journal of Transportation Engineering 1997, 123(6):429-435.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.6 , pp. 429-435
    • Fwa, T.F.1    Chan, W.T.2    Lim, C.T.3
  • 42
    • 0034346069 scopus 로고    scopus 로고
    • Data mining, new challenges for statisticians
    • Hand D.J. Data mining, new challenges for statisticians. Social Science Computer Review 2000, 18(4):442-449.
    • (2000) Social Science Computer Review , vol.18 , Issue.4 , pp. 442-449
    • Hand, D.J.1
  • 43
    • 0000167895 scopus 로고
    • Back-propagation: some comments and variations
    • Lawrence Erlbaum, NJ, D.E. Rumelhart, C. Yves (Eds.)
    • Hanson S.J. Back-propagation: some comments and variations. Back-propagation: Theory, Architecture, and Applications 1995, 237-271. Lawrence Erlbaum, NJ. D.E. Rumelhart, C. Yves (Eds.).
    • (1995) Back-propagation: Theory, Architecture, and Applications , pp. 237-271
    • Hanson, S.J.1
  • 46
    • 0034286954 scopus 로고    scopus 로고
    • A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice
    • Hensher D.A., Ton T.T. A comparison of the predictive potential of artificial neural networks and nested logit models for commuter mode choice. Transportation Research Part E 2000, 36(3):155-172.
    • (2000) Transportation Research Part E , vol.36 , Issue.3 , pp. 155-172
    • Hensher, D.A.1    Ton, T.T.2
  • 47
    • 85029848757 scopus 로고    scopus 로고
    • Neural networks approach to travel behavior in public transport networks
    • TRB (Ed.), TRB Annual Meeting pre-print CD-rom, Washington DC:
    • Hoogendoorn, S.P., Hoogendoorn-Lanser, S., 2001. Neural networks approach to travel behavior in public transport networks. In: TRB (Ed.), TRB Annual Meeting pre-print CD-rom, Washington DC: Transportation Research Board.
    • (2001) Transportation Research Board
    • Hoogendoorn, S.P.1    Hoogendoorn-Lanser, S.2
  • 48
    • 0000584468 scopus 로고
    • Modeling dual carriageway lane changing using neural networks
    • Hunt J.G., Lyons G.D. Modeling dual carriageway lane changing using neural networks. Transportation Research Part C 1994, 2(4):231-245.
    • (1994) Transportation Research Part C , vol.2 , Issue.4 , pp. 231-245
    • Hunt, J.G.1    Lyons, G.D.2
  • 49
    • 0032162884 scopus 로고    scopus 로고
    • Data fusion of fixed detection and probe vehicle data for incident detection
    • Ivan J.N., Sethi V. Data fusion of fixed detection and probe vehicle data for incident detection. Computer-aided Civil & Infrastructure Engineering 1998, 13(5):329-337.
    • (1998) Computer-aided Civil & Infrastructure Engineering , vol.13 , Issue.5 , pp. 329-337
    • Ivan, J.N.1    Sethi, V.2
  • 50
    • 33646002027 scopus 로고    scopus 로고
    • Bus arrival time prediction model for real-time applications
    • Jeong R., Rilett L.R. Bus arrival time prediction model for real-time applications. Transportation Research Record 2005, 1927:195-204.
    • (2005) Transportation Research Record , vol.1927 , pp. 195-204
    • Jeong, R.1    Rilett, L.R.2
  • 51
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • Jiang X., Adeli H. Dynamic wavelet neural network model for traffic flow forecasting. Journal of Transportation Engineering 2005, 131(10):771-779.
    • (2005) Journal of Transportation Engineering , vol.131 , Issue.10 , pp. 771-779
    • Jiang, X.1    Adeli, H.2
  • 52
    • 0036532656 scopus 로고    scopus 로고
    • Development and adaptation of constructive probabilistic neural network in freeway incident detection
    • Jin X., Cheu R.L., Srinivasan D. Development and adaptation of constructive probabilistic neural network in freeway incident detection. Transportation Research Part C: Emerging Technologies 2002, 10(2):121-147.
    • (2002) Transportation Research Part C: Emerging Technologies , vol.10 , Issue.2 , pp. 121-147
    • Jin, X.1    Cheu, R.L.2    Srinivasan, D.3
  • 53
    • 0028467319 scopus 로고
    • Comparison of traditional and neural classifiers for pavement-crack detection
    • Kaseko M.S., Lo Z.-P., Ritchie S.G. Comparison of traditional and neural classifiers for pavement-crack detection. Journal of Transportation Engineering 1994, 120(4):552-569.
    • (1994) Journal of Transportation Engineering , vol.120 , Issue.4 , pp. 552-569
    • Kaseko, M.S.1    Lo, Z.-P.2    Ritchie, S.G.3
  • 54
    • 0032322630 scopus 로고    scopus 로고
    • Statistical and neural classifiers to detect traffic operational problems on urban arterials
    • Khan S.I., Ritchie S.G. Statistical and neural classifiers to detect traffic operational problems on urban arterials. Transportation Research Part C: Emerging Technologies 1998, 6(5):291-314.
    • (1998) Transportation Research Part C: Emerging Technologies , vol.6 , Issue.5 , pp. 291-314
    • Khan, S.I.1    Ritchie, S.G.2
  • 55
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural networks or statistical models for short term motorway forecasting?
    • Kirby H., Dougherty M., Watson S. Should we use neural networks or statistical models for short term motorway forecasting?. International Journal of Forecasting 1997, 13:45-50.
    • (1997) International Journal of Forecasting , vol.13 , pp. 45-50
    • Kirby, H.1    Dougherty, M.2    Watson, S.3
  • 56
    • 84948516717 scopus 로고
    • Artificial neural networks: an econometric perspective
    • Kuan Ch.-M., White H. Artificial neural networks: an econometric perspective. Econometric Reviews 1994, 13(l):1-9.
    • (1994) Econometric Reviews , vol.13 , Issue.1 , pp. 1-9
    • Kuan, C.-M.1    White, H.2
  • 57
    • 46149126623 scopus 로고    scopus 로고
    • Predicting motor vehicle crashes using support vector machine models
    • Li X., Lord D., Zhang Y., Xie Y. Predicting motor vehicle crashes using support vector machine models. Accident Analysis & Prevention 2008, 40(4):1611-1618.
    • (2008) Accident Analysis & Prevention , vol.40 , Issue.4 , pp. 1611-1618
    • Li, X.1    Lord, D.2    Zhang, Y.3    Xie, Y.4
  • 58
    • 0029342535 scopus 로고
    • Classifying highways: hierarchical grouping versus Kohonen neural networks
    • Lingras P. Classifying highways: hierarchical grouping versus Kohonen neural networks. Journal of Transportation Engineering 1995, 121(4):364-368.
    • (1995) Journal of Transportation Engineering , vol.121 , Issue.4 , pp. 364-368
    • Lingras, P.1
  • 59
    • 0030252291 scopus 로고    scopus 로고
    • Average and peak traffic volumes: neural nets, regression, and factor approaches
    • Lingras P., Adamo M. Average and peak traffic volumes: neural nets, regression, and factor approaches. Journal of Computing in Civil Engineering 1996, 10(4):300-306.
    • (1996) Journal of Computing in Civil Engineering , vol.10 , Issue.4 , pp. 300-306
    • Lingras, P.1    Adamo, M.2
  • 60
    • 84947563970 scopus 로고    scopus 로고
    • Time delay neural networks designed using genetic algorithms for short-term inter-city traffic forecasting
    • Lingras P., Mountford P. Time delay neural networks designed using genetic algorithms for short-term inter-city traffic forecasting. Lecture Notes in Artificial Intelligence 2001, 2070:290-299.
    • (2001) Lecture Notes in Artificial Intelligence , vol.2070 , pp. 290-299
    • Lingras, P.1    Mountford, P.2
  • 62
    • 0036944430 scopus 로고    scopus 로고
    • Prediction of recreational travel using genetically designed regression and time delay neural network models
    • Lingras P.J., Sharma S.C., Zhong M. Prediction of recreational travel using genetically designed regression and time delay neural network models. Transportation Research Record 2002, 1805:16-24.
    • (2002) Transportation Research Record , vol.1805 , pp. 16-24
    • Lingras, P.J.1    Sharma, S.C.2    Zhong, M.3
  • 63
    • 79951769928 scopus 로고    scopus 로고
    • Neural networks and non-parametric statistical models: a comparative analysis in pavement condition assessment
    • Loizos A., Karlaftis M. Neural networks and non-parametric statistical models: a comparative analysis in pavement condition assessment. Journal Advances and Applications in Statistics 2006, 6(1):87-110.
    • (2006) Journal Advances and Applications in Statistics , vol.6 , Issue.1 , pp. 87-110
    • Loizos, A.1    Karlaftis, M.2
  • 65
    • 0003619045 scopus 로고    scopus 로고
    • Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures, and Stability
    • Wiley Series in Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons, NY.
    • Mandic, D.P., Chambers, J.A., 2001. Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures, and Stability. Wiley Series in Adaptive and Learning Systems for Signal Processing, Communications, and Control. John Wiley & Sons, NY.
    • (2001)
    • Mandic, D.P.1    Chambers, J.A.2
  • 66
    • 0000089772 scopus 로고
    • Analysis of feedforward-backpropagation neural networks used in vehicle detection
    • Mantri S., Bullock D. Analysis of feedforward-backpropagation neural networks used in vehicle detection. Transportation Research Part C: Emerging Technologies 1995, 3(3):161-174.
    • (1995) Transportation Research Part C: Emerging Technologies , vol.3 , Issue.3 , pp. 161-174
    • Mantri, S.1    Bullock, D.2
  • 67
    • 0035741961 scopus 로고    scopus 로고
    • Application of artificial neural networks to predict speeds on two-lane rural highways
    • McFadden J., Yang W.T., Durrans S. Application of artificial neural networks to predict speeds on two-lane rural highways. Transportation Research Record 2001, 1751:9-17.
    • (2001) Transportation Research Record , vol.1751 , pp. 9-17
    • McFadden, J.1    Yang, W.T.2    Durrans, S.3
  • 68
    • 0036959642 scopus 로고    scopus 로고
    • Nested logit models and artificial neural networks for predicting household automobile choices: comparison of performance
    • Mohammadian A., Miller E.J. Nested logit models and artificial neural networks for predicting household automobile choices: comparison of performance. Transportation Research Record 2002, 1807:92-100.
    • (2002) Transportation Research Record , vol.1807 , pp. 92-100
    • Mohammadian, A.1    Miller, E.J.2
  • 69
    • 3242781655 scopus 로고    scopus 로고
    • Forecasting the Suez Canal traffic: a neural network analysis
    • Mostafa M.M. Forecasting the Suez Canal traffic: a neural network analysis. Maritime Policy & Management 2004, 31(2):139-156.
    • (2004) Maritime Policy & Management , vol.31 , Issue.2 , pp. 139-156
    • Mostafa, M.M.1
  • 70
    • 0033988603 scopus 로고    scopus 로고
    • Trip distribution forecasting with multiplayer perceptron neural networks: a critical evaluation
    • Mozolin M., Thill J.C., Lynn Usery E.L. Trip distribution forecasting with multiplayer perceptron neural networks: a critical evaluation. Transportation Research Part B 2000, 34(1):53-73.
    • (2000) Transportation Research Part B , vol.34 , Issue.1 , pp. 53-73
    • Mozolin, M.1    Thill, J.C.2    Lynn Usery, E.L.3
  • 71
    • 0242489523 scopus 로고    scopus 로고
    • Feature selection for intrusion detection using neural networks and support vector machines
    • Mukkamala S., Sung A.H. Feature selection for intrusion detection using neural networks and support vector machines. Transportation Research Record 2003, 1823:33-39.
    • (2003) Transportation Research Record , vol.1823 , pp. 33-39
    • Mukkamala, S.1    Sung, A.H.2
  • 72
    • 0028544395 scopus 로고
    • Network information criterion: determining the number of hidden units for an artificial network model
    • Murata N., Yoshizawa S., Amari S. Network information criterion: determining the number of hidden units for an artificial network model. IEEE Transactions on Neural Networks 1994, 5:865-872.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , pp. 865-872
    • Murata, N.1    Yoshizawa, S.2    Amari, S.3
  • 73
    • 0029333795 scopus 로고    scopus 로고
    • Description of macroscopic relationships among traffic flow variables using neural network models
    • Nakatsuji T., Tanaka M., Nasser P., Hagiwara T. Description of macroscopic relationships among traffic flow variables using neural network models. Transportation Research Record 1998, 1510:11-18.
    • (1998) Transportation Research Record , vol.1510 , pp. 11-18
    • Nakatsuji, T.1    Tanaka, M.2    Nasser, P.3    Hagiwara, T.4
  • 75
    • 0030388412 scopus 로고    scopus 로고
    • Modelling inter-urban transport flows in Italy: a comparison between neural network approach and logit analysis
    • Nijkamp P., Reggiani A., Tritapepe T. Modelling inter-urban transport flows in Italy: a comparison between neural network approach and logit analysis. Transportation Research Part C 1996, 4:323-338.
    • (1996) Transportation Research Part C , vol.4 , pp. 323-338
    • Nijkamp, P.1    Reggiani, A.2    Tritapepe, T.3
  • 76
    • 33646393004 scopus 로고    scopus 로고
    • Exploring the relationship between data aggregation and predictability toward providing better predictive traffic information
    • Oh C., Ritchie S.G., Oh J.-S. Exploring the relationship between data aggregation and predictability toward providing better predictive traffic information. Transportation Research Record 2005, 1935:28-36.
    • (2005) Transportation Research Record , vol.1935 , pp. 28-36
    • Oh, C.1    Ritchie, S.G.2    Oh, J.-S.3
  • 77
    • 0028429812 scopus 로고
    • Neural network for gap acceptance at stop-controlled intersections
    • Pant P.D., Balakrishnan P. Neural network for gap acceptance at stop-controlled intersections. Journal of Transportation Engineering 1994, 120(3):432-446.
    • (1994) Journal of Transportation Engineering , vol.120 , Issue.3 , pp. 432-446
    • Pant, P.D.1    Balakrishnan, P.2
  • 78
    • 0032779078 scopus 로고    scopus 로고
    • Spectral basis neural networks for real-time travel time forecasting
    • Park D., Rilett L., Han G. Spectral basis neural networks for real-time travel time forecasting. Journal of Transportation Engineering 1999, 125(6):515-523.
    • (1999) Journal of Transportation Engineering , vol.125 , Issue.6 , pp. 515-523
    • Park, D.1    Rilett, L.2    Han, G.3
  • 80
    • 0035501669 scopus 로고    scopus 로고
    • Intelligent simulation and prediction of traffic flow dispersion
    • Qiao F., Yang H., Lam W.H.K. Intelligent simulation and prediction of traffic flow dispersion. Transportation Research Part B 2001, 35:843-863.
    • (2001) Transportation Research Part B , vol.35 , pp. 843-863
    • Qiao, F.1    Yang, H.2    Lam, W.H.K.3
  • 81
    • 0344178141 scopus 로고    scopus 로고
    • Another insight into artificial neural networks through behavioural analysis of access mode choice
    • Rao P.V., Sikdar P.K., Rao K.V., Dhingra S.L. Another insight into artificial neural networks through behavioural analysis of access mode choice. Computers, Environment and Urban Systems 1998, 22(5):485-496.
    • (1998) Computers, Environment and Urban Systems , vol.22 , Issue.5 , pp. 485-496
    • Rao, P.V.1    Sikdar, P.K.2    Rao, K.V.3    Dhingra, S.L.4
  • 83
    • 1642341272 scopus 로고    scopus 로고
    • Toward more effective transportation applications of computational intelligence paradigms
    • Sadek A.W., Spring G., Smith B.L. Toward more effective transportation applications of computational intelligence paradigms. Transportation Research Record 2003, 1836:57-63.
    • (2003) Transportation Research Record , vol.1836 , pp. 57-63
    • Sadek, A.W.1    Spring, G.2    Smith, B.L.3
  • 84
    • 0002997755 scopus 로고
    • Neural networks and statistical models
    • Proceedings of the Nineteenth Annual SAS Users Group International Conference (April 1-13).
    • Sarle, W.S., 1994. Neural networks and statistical models. In: Proceedings of the Nineteenth Annual SAS Users Group International Conference (April 1-13).
    • (1994)
    • Sarle, W.S.1
  • 86
    • 0033692230 scopus 로고    scopus 로고
    • Comparison of neural and conventional approaches to mode choice analysis
    • Sayed T., Razavi A. Comparison of neural and conventional approaches to mode choice analysis. Journal of Computing in Civil Engineering 2000, 14(1):23-30.
    • (2000) Journal of Computing in Civil Engineering , vol.14 , Issue.1 , pp. 23-30
    • Sayed, T.1    Razavi, A.2
  • 87
    • 33750314167 scopus 로고    scopus 로고
    • Comparison of fuzzy logic and artificial neural networks approaches in vehicle delay modeling
    • Sazi Murat Y. Comparison of fuzzy logic and artificial neural networks approaches in vehicle delay modeling. Transportation Research Part C: Emerging Technologies 2006, 14:316-334.
    • (2006) Transportation Research Part C: Emerging Technologies , vol.14 , pp. 316-334
    • Sazi Murat, Y.1
  • 89
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: comparison of modeling approaches
    • Smith B., Demetsky M. Traffic flow forecasting: comparison of modeling approaches. Journal of Transportation Engineering 1997, 123(4):261-266.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • Smith, B.1    Demetsky, M.2
  • 91
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa S.I.V., Martins F.G., Alvim-Ferraz M.C.M., Pereira M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling & Software 2007, 22:97-103.
    • (2007) Environmental Modelling & Software , vol.22 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 95
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society B 1974, 36:111-147.
    • (1974) Journal of the Royal Statistical Society B , vol.36 , pp. 111-147
    • Stone, M.1
  • 96
    • 0038630725 scopus 로고    scopus 로고
    • Comparison of four modeling techniques for short-term AADT forecasting in Hong Kong
    • Tang Y.F., Lam W.H.K., Ng Pan.L.P. Comparison of four modeling techniques for short-term AADT forecasting in Hong Kong. Journal of Transportation Engineering 2003, 129(3):271-277.
    • (2003) Journal of Transportation Engineering , vol.129 , Issue.3 , pp. 271-277
    • Tang, Y.F.1    Lam, W.H.K.2    Ng, P.3
  • 97
    • 0041662165 scopus 로고    scopus 로고
    • Detection-delay-based freeway incident detection algorithms
    • Teng H., Qi Y. Detection-delay-based freeway incident detection algorithms. Transportation Research Part C 2003, 11(3/4):265-287.
    • (2003) Transportation Research Part C , vol.11 , Issue.3-4 , pp. 265-287
    • Teng, H.1    Qi, Y.2
  • 98
    • 0042664084 scopus 로고    scopus 로고
    • Application of wavelet technique to freeway incident detection
    • Teng H., Qi Y. Application of wavelet technique to freeway incident detection. Transportation Research Part C 2003, 11(3/4):289-308.
    • (2003) Transportation Research Part C , vol.11 , Issue.3-4 , pp. 289-308
    • Teng, H.1    Qi, Y.2
  • 102
    • 0036131889 scopus 로고    scopus 로고
    • Neural network modeling of vehicle discharge headway at signalized intersection: model descriptions and the results
    • Tong H.Y., Hung W.T. Neural network modeling of vehicle discharge headway at signalized intersection: model descriptions and the results. Transportation Research Part A 2002, 36(1):17-40.
    • (2002) Transportation Research Part A , vol.36 , Issue.1 , pp. 17-40
    • Tong, H.Y.1    Hung, W.T.2
  • 103
    • 58549103497 scopus 로고    scopus 로고
    • The modeling of mode choices of intercity freight transportation with the artificial neural networks and adaptive neuro-fuzzy inference system
    • Tortum A., Yayla N., Gφkdaǧ M. The modeling of mode choices of intercity freight transportation with the artificial neural networks and adaptive neuro-fuzzy inference system. Expert Systems with Applications: An International Journal 2009, 36(3):6199-6217.
    • (2009) Expert Systems with Applications: An International Journal , vol.36 , Issue.3 , pp. 6199-6217
    • Tortum, A.1    Yayla, N.2    Gφkdaǧ, M.3
  • 104
    • 56349087795 scopus 로고    scopus 로고
    • Neural network based temporal feature models for short-term railway passenger demand forecasting
    • Tsai T.-H., Lee C.-K., Wei C.-H. Neural network based temporal feature models for short-term railway passenger demand forecasting. Expert Systems with Applications 2009, 36:3728-3736.
    • (2009) Expert Systems with Applications , vol.36 , pp. 3728-3736
    • Tsai, T.-H.1    Lee, C.-K.2    Wei, C.-H.3
  • 106
    • 33746862612 scopus 로고    scopus 로고
    • An integrated transportation decision support system for transportation policy decisions: the case of Turkey
    • Ulengin F., Onsel S., Topceu Y., Aktas E., Kabak O. An integrated transportation decision support system for transportation policy decisions: the case of Turkey. Transportation Research Part A 2007, 41:80-97.
    • (2007) Transportation Research Part A , vol.41 , pp. 80-97
    • Ulengin, F.1    Onsel, S.2    Topceu, Y.3    Aktas, E.4    Kabak, O.5
  • 107
    • 0030298951 scopus 로고    scopus 로고
    • Combining Kohonen maps with ARIMA time-series models to forecast traffic flow
    • Van der Voort M., Dougherty M., Watson S. Combining Kohonen maps with ARIMA time-series models to forecast traffic flow. Transportation Research Part C 1996, 4(5):307-318.
    • (1996) Transportation Research Part C , vol.4 , Issue.5 , pp. 307-318
    • Van der Voort, M.1    Dougherty, M.2    Watson, S.3
  • 108
    • 70349501971 scopus 로고    scopus 로고
    • Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics
    • Vlahogianni E.I. Enhancing predictions in signalized arterials with information on short-term traffic flow dynamics. Journal of Intelligent Transportation Systems 2009, 13(2):73-84.
    • (2009) Journal of Intelligent Transportation Systems , vol.13 , Issue.2 , pp. 73-84
    • Vlahogianni, E.I.1
  • 109
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: overview of objectives and methods
    • Vlahogianni E.I., Golias J.C., Karlaftis M.G. Short-term traffic forecasting: overview of objectives and methods. Transport Reviews 2004, 24(5):533-557.
    • (2004) Transport Reviews , vol.24 , Issue.5 , pp. 533-557
    • Vlahogianni, E.I.1    Golias, J.C.2    Karlaftis, M.G.3
  • 110
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach
    • Vlahogianni E.I., Karlaftis M.G., Golias J.C. Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach. Transportation Research Part C 2005, 13:211-234.
    • (2005) Transportation Research Part C , vol.13 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 113
    • 0037305963 scopus 로고    scopus 로고
    • Modeling discrete choice behavior using concepts from fuzzy set theory, approximate reasoning and neural networks
    • Vythoulkas P.C., Koutsopoulos H.N. Modeling discrete choice behavior using concepts from fuzzy set theory, approximate reasoning and neural networks. Transportation Research Part C: Emerging Technologies 2003, 11(1):51-73.
    • (2003) Transportation Research Part C: Emerging Technologies , vol.11 , Issue.1 , pp. 51-73
    • Vythoulkas, P.C.1    Koutsopoulos, H.N.2
  • 115
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Warner B., Misra M. Understanding neural networks as statistical tools. The American Statistician 1996, 50(4):284-293.
    • (1996) The American Statistician , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 117
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: a statistical perspective
    • White H. Learning in artificial neural networks: a statistical perspective. Neural Computation 1989, 1:425-464.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 119
    • 1942472940 scopus 로고    scopus 로고
    • Work travel mode choice modeling with data mining: decision trees and neural networks
    • Xie C., Lu J., Parkany E. Work travel mode choice modeling with data mining: decision trees and neural networks. Transportation Research Record 2003, 1854:50-61.
    • (2003) Transportation Research Record , vol.1854 , pp. 50-61
    • Xie, C.1    Lu, J.2    Parkany, E.3
  • 120
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using Bayesian neural network models: an empirical analysis
    • Xie Y., Lord D., Zhang Y. Predicting motor vehicle collisions using Bayesian neural network models: an empirical analysis. Accident Analysis & Prevention 2007, 39(5):922-933.
    • (2007) Accident Analysis & Prevention , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3
  • 122
    • 0031813794 scopus 로고    scopus 로고
    • Statistical inference. Learning in artificial neural networks
    • Yang H.H., Murata N., Amari S. Statistical inference. Learning in artificial neural networks. Trends in Cognitive Sciences 1998, 2(1):4-10.
    • (1998) Trends in Cognitive Sciences , vol.2 , Issue.1 , pp. 4-10
    • Yang, H.H.1    Murata, N.2    Amari, S.3
  • 123
    • 33846855146 scopus 로고    scopus 로고
    • Modeling crack deterioration of flexible pavements: comparison of recurrent Markov chains and artificial neural networks
    • Yang J., Lu J.J., Gunaratne M., Dietrich B. Modeling crack deterioration of flexible pavements: comparison of recurrent Markov chains and artificial neural networks. Transportation Research Record 2006, 1974:18-25.
    • (2006) Transportation Research Record , vol.1974 , pp. 18-25
    • Yang, J.1    Lu, J.J.2    Gunaratne, M.3    Dietrich, B.4
  • 124
    • 0033244190 scopus 로고    scopus 로고
    • Prediction of road traffic using a neural network approach
    • Yasdi R. Prediction of road traffic using a neural network approach. Neural Computation and Application 1999, 8:135-142.
    • (1999) Neural Computation and Application , vol.8 , pp. 135-142
    • Yasdi, R.1
  • 125
    • 76249133880 scopus 로고    scopus 로고
    • Evaluation of the effects of weather information on winter maintenance costs
    • Ye Z., Shi X., Strong C.K., Greenfield T.H. Evaluation of the effects of weather information on winter maintenance costs. Transportation Research Record 2009, 2107:104-110.
    • (2009) Transportation Research Record , vol.2107 , pp. 104-110
    • Ye, Z.1    Shi, X.2    Strong, C.K.3    Greenfield, T.H.4
  • 126
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using fuzzy-neural approach
    • Yin H., Wong S.C., Xu J. Urban traffic flow prediction using fuzzy-neural approach. Transportation Research Part C 2002, 10(2):85-98.
    • (2002) Transportation Research Part C , vol.10 , Issue.2 , pp. 85-98
    • Yin, H.1    Wong, S.C.2    Xu, J.3
  • 127
    • 33846547664 scopus 로고    scopus 로고
    • Application of genetic neural networks to real-time intersection accident detection using acoustic signal
    • Zhang Y., Xie Y. Application of genetic neural networks to real-time intersection accident detection using acoustic signal. Transportation Research Record 2006, 1968:75-82.
    • (2006) Transportation Research Record , vol.1968 , pp. 75-82
    • Zhang, Y.1    Xie, Y.2
  • 128
    • 61349094687 scopus 로고    scopus 로고
    • Travel mode choice modeling with support vector machines
    • Zhang Y., Xie Y. Travel mode choice modeling with support vector machines. Transportation Research Record 2008, 2076:141-150.
    • (2008) Transportation Research Record , vol.2076 , pp. 141-150
    • Zhang, Y.1    Xie, Y.2
  • 129
    • 3242756135 scopus 로고    scopus 로고
    • Genetically designed models for accurate imputation of missing traffic counts
    • Zhong M., Sharma S., Lingras P. Genetically designed models for accurate imputation of missing traffic counts. Transportation Research Record 2004, 1879:71-79.
    • (2004) Transportation Research Record , vol.1879 , pp. 71-79
    • Zhong, M.1    Sharma, S.2    Lingras, P.3
  • 130
    • 16644384670 scopus 로고    scopus 로고
    • Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models
    • Zhong M., Sharma S., Lingras P. Short-term traffic prediction on different types of roads with genetically designed regression and time delay neural network models. Journal of Computing in Civil Engineering 2005, 19(1):94-103.
    • (2005) Journal of Computing in Civil Engineering , vol.19 , Issue.1 , pp. 94-103
    • Zhong, M.1    Sharma, S.2    Lingras, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.