메뉴 건너뛰기




Volumn 17, Issue 2, 2008, Pages 19-33

Short-term predictability of traffic flow regimes in signalised arterials

Author keywords

[No Author keywords available]

Indexed keywords

ADMINISTRATIVE DATA PROCESSING; ARTIFICIAL INTELLIGENCE; FORECASTING; IMAGE CLASSIFICATION; INTELLIGENT SYSTEMS; INTELLIGENT VEHICLE HIGHWAY SYSTEMS; MANAGEMENT INFORMATION SYSTEMS; NETWORK MANAGEMENT; STATISTICAL METHODS; TRAFFIC CONTROL; TRAFFIC SURVEYS; VEGETATION; VEHICLE LOCATING SYSTEMS;

EID: 49749118001     PISSN: 10375783     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (5)

References (46)
  • 1
    • 0033745936 scopus 로고    scopus 로고
    • An adaptive conjugate gradient neural network-wavelet model for traffic incident detection
    • ADELI, H, and SAMANT, A (2000). An adaptive conjugate gradient neural network-wavelet model for traffic incident detection, Computer-Aided Civil and Infrastructure Engineering, 15(4), 251-260.
    • (2000) Computer-Aided Civil and Infrastructure Engineering , vol.15 , Issue.4 , pp. 251-260
    • ADELI, H.1    SAMANT, A.2
  • 3
    • 49749122670 scopus 로고    scopus 로고
    • CACUCI, DG (1990). Sensitivity & Uncertainty Analysis, 1: Theory, CRC Press, Boca Raton.
    • CACUCI, DG (1990). Sensitivity & Uncertainty Analysis, Volume 1: Theory, CRC Press, Boca Raton.
  • 5
    • 0001405969 scopus 로고    scopus 로고
    • Statistical physics of vehicular traffic and some related systems,
    • 3294-6, 199-329
    • CHOWDHURY, D, SANTEN L and SCHADSCHNEIDER, A (2000). Statistical physics of vehicular traffic and some related systems, Physics Reports, 329(4-6), 199-329.
    • (2000) Physics Reports
    • CHOWDHURY, D.1    SANTEN, L.2    SCHADSCHNEIDER, A.3
  • 6
    • 4444316599 scopus 로고
    • The use of neural networks and time series models for short-term traffic forecasting: A comparative study
    • Manchester, UK
    • CLARK, SD, DOUGHERTY, MS and KIRBY, HR (1993). The use of neural networks and time series models for short-term traffic forecasting: a comparative study, Proceedings of the PTRC 21st Summer Annual Meeting, Manchester, UK.
    • (1993) Proceedings of the PTRC 21st Summer Annual Meeting
    • CLARK, S.D.1    DOUGHERTY, M.S.2    KIRBY, H.R.3
  • 7
    • 0035372068 scopus 로고    scopus 로고
    • An object-oriented neural network approach to short-term traffic forecasting
    • DIA, H (2001). An object-oriented neural network approach to short-term traffic forecasting, European Journal of Operational Research, 131(2), 253-61.
    • (2001) European Journal of Operational Research , vol.131 , Issue.2 , pp. 253-261
    • DIA, H.1
  • 8
    • 34548696055 scopus 로고
    • Independent coordinates for strange attractors from mutual information
    • FRASER, AM and SWINNEY, HL (1986). Independent coordinates for strange attractors from mutual information, Physical Review A, 33(2), 1134-40.
    • (1986) Physical Review A , vol.33 , Issue.2 , pp. 1134-1140
    • FRASER, A.M.1    SWINNEY, H.L.2
  • 9
    • 0034701731 scopus 로고    scopus 로고
    • On the structures and quantification of recurrence plots
    • GAO, J and CAI, H (2000). On the structures and quantification of recurrence plots, Physics Letters A, 270, 75-87.
    • (2000) Physics Letters A , vol.270 , pp. 75-87
    • GAO, J.1    CAI, H.2
  • 10
    • 0029333226 scopus 로고
    • Development of advanced traffic signal control strategies for intelligent transportation systems: Multilevel design
    • GARTNER, NH, STAMATIADIS, C and TARNOFF, PJ (1995). Development of advanced traffic signal control strategies for intelligent transportation systems: multilevel design, Transportation Research Record, 1494, 98-105.
    • (1995) Transportation Research Record , vol.1494 , pp. 98-105
    • GARTNER, N.H.1    STAMATIADIS, C.2    TARNOFF, P.J.3
  • 11
    • 33847182046 scopus 로고    scopus 로고
    • Bayesian time-series model for short-term traffic flow forecasting
    • GHOSH, B, BASU, B and O'MAHONY, M (2007). Bayesian time-series model for short-term traffic flow forecasting, Journal of Transportation Engineering, 133(3), 180-89.
    • (2007) Journal of Transportation Engineering , vol.133 , Issue.3 , pp. 180-189
    • GHOSH, B.1    BASU, B.2    O'MAHONY, M.3
  • 14
    • 0036848533 scopus 로고    scopus 로고
    • Performance evaluation of short-term time-series traffic prediction model
    • ISHAK, S and AL-DEEK, H (2002). Performance evaluation of short-term time-series traffic prediction model, Journal of transportation Engineering, 128(6), 490-98.
    • (2002) Journal of transportation Engineering , vol.128 , Issue.6 , pp. 490-498
    • ISHAK, S.1    AL-DEEK, H.2
  • 15
    • 3242676259 scopus 로고    scopus 로고
    • Optimizing traffic prediction performance of neural networks under various topological, input and traffic condition settings
    • ISHAK, S, and ALECSANDRU, C (2004). Optimizing traffic prediction performance of neural networks under various topological, input and traffic condition settings, Journal of Transportation Engineering, 130(4), 452-65.
    • (2004) Journal of Transportation Engineering , vol.130 , Issue.4 , pp. 452-465
    • ISHAK, S.1    ALECSANDRU, C.2
  • 16
    • 26444571471 scopus 로고    scopus 로고
    • Dynamic wavelet neural network model for traffic flow forecasting
    • JIANG, X and ADELI, H (2005). Dynamic wavelet neural network model for traffic flow forecasting, Journal of Transportation Engineering, 131(10), 771-79.
    • (2005) Journal of Transportation Engineering , vol.131 , Issue.10 , pp. 771-779
    • JIANG, X.1    ADELI, H.2
  • 18
    • 35949006791 scopus 로고
    • Determining embedding dimension for phase-space reconstruction using a geometrical construction
    • KENNEL, MB, BROWN, R and ABARBANEL, HDI (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction, Physical Review A, 45, 3403.
    • (1992) Physical Review A , vol.45 , pp. 3403
    • KENNEL, M.B.1    BROWN, R.2    ABARBANEL, H.D.I.3
  • 19
    • 0031092111 scopus 로고    scopus 로고
    • Should we use neural networks or statistical models for short term motorway forecasting?
    • KIRBY, H, DOUGHERTY, M, and WATSON, S (1997). Should we use neural networks or statistical models for short term motorway forecasting? International Journal of Forecasting, 13, 45-50.
    • (1997) International Journal of Forecasting , vol.13 , pp. 45-50
    • KIRBY, H.1    DOUGHERTY, M.2    WATSON, S.3
  • 21
    • 0031284302 scopus 로고    scopus 로고
    • An urban traffic flow model integrating neural networks
    • LEDOUX, C (1997). An urban traffic flow model integrating neural networks, Transportation Research Part C, 5, 287-300.
    • (1997) Transportation Research Part C , vol.5 , pp. 287-300
    • LEDOUX, C.1
  • 22
    • 0037201218 scopus 로고    scopus 로고
    • Nonlinear analysis of bivariate data with cross recurrence plots
    • MARWAN, N and KURTHS, J (2002). Nonlinear analysis of bivariate data with cross recurrence plots, Physics Letters A, 302(5-6), 299-307
    • (2002) Physics Letters A , vol.302 , Issue.5-6 , pp. 299-307
    • MARWAN, N.1    KURTHS, J.2
  • 23
    • 33846338227 scopus 로고    scopus 로고
    • Recurrence plots for the analysis of complex systems,
    • 438, 237-329
    • MARWAN, N, ROMANO, MC, THIEL, M and KURTHS, J (2007). Recurrence plots for the analysis of complex systems, Physics Reports, 438, 237-329.
    • (2007) Physics Reports
    • MARWAN, N.1    ROMANO, M.C.2    THIEL, M.3    KURTHS, J.4
  • 24
    • 0019926821 scopus 로고
    • Global sensitivity analysis - a computational implementation of the Fourier amplitude sensitivity test (FAST)
    • McRAE, GJ, TILDEN, JW, and SEINFELD, JH. (1982). Global sensitivity analysis - a computational implementation of the Fourier amplitude sensitivity test (FAST), Computers and Chemical Engineering, 6(1), 15-25.
    • (1982) Computers and Chemical Engineering , vol.6 , Issue.1 , pp. 15-25
    • McRAE, G.J.1    TILDEN, J.W.2    SEINFELD, J.H.3
  • 25
    • 0035546649 scopus 로고    scopus 로고
    • A real-time traffic signal control system: Architecture, algorithms, and analysis
    • MIRCHANDANI, P and HEAD, L (2001). A real-time traffic signal control system: architecture, algorithms, and analysis, Transportation Research Part C: Emerging Technologies, 9(6), 415-32.
    • (2001) Transportation Research Part C: Emerging Technologies , vol.9 , Issue.6 , pp. 415-432
    • MIRCHANDANI, P.1    HEAD, L.2
  • 26
    • 0002474581 scopus 로고
    • Modular learning
    • EL Schwartz ed, MIT Press. Cambridge MA, pp
    • OSHERSON, D, WEINSTEIN, S and STOLI, M (1990). Modular learning, in: EL Schwartz (ed.) Computational Neuroscience, MIT Press. Cambridge MA, pp 369-77
    • (1990) Computational Neuroscience , pp. 369-377
    • OSHERSON, D.1    WEINSTEIN, S.2    STOLI, M.3
  • 28
    • 0005037327 scopus 로고
    • Modular Neural Networks: A State of the art
    • 95026, Centre for System and Control, University of Glasgow, Glasgow, UK
    • RONCO, E and GAWTHROP, P (1995). Modular Neural Networks: A State of the art, Technical Report CSC 95026, Centre for System and Control, University of Glasgow, Glasgow, UK.
    • (1995) Technical Report CSC
    • RONCO, E.1    GAWTHROP, P.2
  • 29
    • 0038034269 scopus 로고    scopus 로고
    • Meeting real-time requirements with imprecise computations: A case study in traffic flow forecasting
    • SMITH, BL and OSWALD, RK (2003). Meeting real-time requirements with imprecise computations: A case study in traffic flow forecasting, Computer Aided Civil and Infrastructure Engineering, 18, 201-13.
    • (2003) Computer Aided Civil and Infrastructure Engineering , vol.18 , pp. 201-213
    • SMITH, B.L.1    OSWALD, R.K.2
  • 31
    • 0031472064 scopus 로고    scopus 로고
    • Traffic flow forecasting: Comparison of modelling approaches
    • SMITH, BL and DEMETSKY, MJ (1997). Traffic flow forecasting: Comparison of modelling approaches. Journal of Transportation Engineering, 123(4), 261-66.
    • (1997) Journal of Transportation Engineering , vol.123 , Issue.4 , pp. 261-266
    • SMITH, B.L.1    DEMETSKY, M.J.2
  • 33
    • 0037954189 scopus 로고    scopus 로고
    • A multivariate state-space approach for urban traffic flow modelling and prediction
    • STATHOPOULOS, A, and KARLAFTIS, MG (2003). A multivariate state-space approach for urban traffic flow modelling and prediction, Transportation Research Part C, 11(2), 121-35.
    • (2003) Transportation Research Part C , vol.11 , Issue.2 , pp. 121-135
    • STATHOPOULOS, A.1    KARLAFTIS, M.G.2
  • 34
    • 33751077286 scopus 로고    scopus 로고
    • Reliable real-time framework for short-term freeway travel time prediction
    • VAN LINT JWC (2006). Reliable real-time framework for short-term freeway travel time prediction, Journal of Transportation Engineering, 132, 12, 921-32.
    • (2006) Journal of Transportation Engineering , vol.132 , Issue.12 , pp. 921-932
    • JWC, V.L.1
  • 35
    • 33750338259 scopus 로고    scopus 로고
    • Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term timeseries of traffic volume
    • VLAHOGIANNI, EI, KARLAFTIS, MG and GOLIAS, JC (2006a). Statistical methods for detecting nonlinearity and non-stationarity in univariate short-term timeseries of traffic volume, Transportation Research C: Emerging Technologies, 14(5), 351-67.
    • (2006) Transportation Research C: Emerging Technologies , vol.14 , Issue.5 , pp. 351-367
    • VLAHOGIANNI, E.I.1    KARLAFTIS, M.G.2    GOLIAS, J.C.3
  • 36
    • 49749121853 scopus 로고    scopus 로고
    • Patterns in short-term urban traffic flow: Framework for statistical detection and identification
    • Compendium of Papers CD-ROM, Washington DC
    • VLAHOGIANNI, EI, KARLAFTIS, MG and GOLIAS, JC (2006b). Patterns in short-term urban traffic flow: framework for statistical detection and identification, TRB 85th Annual Meeting Compendium of Papers CD-ROM, Washington DC.
    • (2006) TRB 85th Annual Meeting
    • VLAHOGIANNI, E.I.1    KARLAFTIS, M.G.2    GOLIAS, J.C.3
  • 37
    • 4444369422 scopus 로고    scopus 로고
    • Short-term traffic forecasting: Overview of objectives and methods
    • VL AHOGIANNI, EI, GOLIAS, JC and KARLAFTIS, MG (2004). Short-term traffic forecasting: Overview of objectives and methods, Transport Reviews, 24(5), 533-57.
    • (2004) Transport Reviews , vol.24 , Issue.5 , pp. 533-557
    • VL AHOGIANNI, E.1    GOLIAS, J.2    KARLAFTIS, M.3
  • 39
    • 34249317652 scopus 로고    scopus 로고
    • Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks
    • VLAHOGIANNI, EI, KARLAFTIS, MG and GOLIAS, JC (2007). Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks, Computer-Aided Civil and Infrastructure Engineering, 22(5), 317-25.
    • (2007) Computer-Aided Civil and Infrastructure Engineering , vol.22 , Issue.5 , pp. 317-325
    • VLAHOGIANNI, E.I.1    KARLAFTIS, M.G.2    GOLIAS, J.C.3
  • 40
    • 14944360184 scopus 로고    scopus 로고
    • Recurrence quantification analysis of nonlinear dynamical systems
    • Chapter 2, The National Science Foundation, Arlington, Virginia, USA
    • WEBBER, CL, Jr. and ZBILUT, JP (2005). Recurrence quantification analysis of nonlinear dynamical systems, in: Tutorials in contemporary nonlinear methods for the behavioral sciences, Chapter 2, The National Science Foundation, Arlington, Virginia, USA.
    • (2005) Tutorials in contemporary nonlinear methods for the behavioral sciences
    • WEBBER Jr., C.L.1    ZBILUT, J.P.2
  • 42
    • 34249030515 scopus 로고    scopus 로고
    • Short-term traffic volume forecasting using Kaiman filter with discrete wavelet decomposition
    • XIE, Y, ZHANG, Y and YE, Z (2007). Short-term traffic volume forecasting using Kaiman filter with discrete wavelet decomposition, Computer-Aided Civil and Infrastructure Engineering, 22(5), 326-34.
    • (2007) Computer-Aided Civil and Infrastructure Engineering , vol.22 , Issue.5 , pp. 326-334
    • XIE, Y.1    ZHANG, Y.2    YE, Z.3
  • 43
    • 23644455864 scopus 로고
    • Evolution of connectionist networks
    • T. Dartnall, editor, Griffith University, Queensland, Australia, pp
    • YAO, X (1991). Evolution of connectionist networks, in T. Dartnall, editor, Preprints of the International Symposium on AI, Reasoning & Creativity, Griffith University, Queensland, Australia, pp. 49-52.
    • (1991) Preprints of the International Symposium on AI, Reasoning & Creativity , pp. 49-52
    • YAO, X.1
  • 44
    • 0036532655 scopus 로고    scopus 로고
    • Urban traffic flow prediction using fuzzy-neural approach
    • YIN, H, WONG, SC and XU, J (2002). Urban traffic flow prediction using fuzzy-neural approach, Transportation Research Part C, 10, 85-98.
    • (2002) Transportation Research Part C , vol.10 , pp. 85-98
    • YIN, H.1    WONG, S.C.2    XU, J.3
  • 45
    • 0042357254 scopus 로고    scopus 로고
    • Recurrence quantification analysis and principal components in the detection of short complex signals
    • ZBILUT, JP, GIULIANI, A and WEBBER, CL Jr. (1998). Recurrence quantification analysis and principal components in the detection of short complex signals, Physics Letters A,237, 131-35.
    • (1998) Physics Letters A , vol.237 , pp. 131-135
    • ZBILUT, J.P.1    GIULIANI, A.2    WEBBER Jr., C.L.3
  • 46
    • 40449104106 scopus 로고    scopus 로고
    • Forecasting of short-term freeway volume with v-support vector machines
    • ZHANG, Y and XIE, Y (2007). Forecasting of short-term freeway volume with v-support vector machines, Transportation Research Record No. 2024, 92-99.
    • (2007) Transportation Research Record No. 2024 , pp. 92-99
    • ZHANG, Y.1    XIE, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.